Review Article | Published:

Space-division multiplexing in optical fibres

Nature Photonics volume 7, pages 354362 (2013) | Download Citation

Abstract

Optical communication technology has been advancing rapidly for several decades, supporting our increasingly information-driven society and economy. Much of this progress has been in finding innovative ways to increase the data-carrying capacity of a single optical fibre. To achieve this, researchers have explored and attempted to optimize multiplexing in time, wavelength, polarization and phase. Commercial systems now utilize all four dimensions to send more information through a single fibre than ever before. The spatial dimension has, however, remained untapped in single fibres, despite it being possible to manufacture fibres supporting hundreds of spatial modes or containing multiple cores, which could be exploited as parallel channels for independent signals.

This Review summarizes the simultaneous transmission of several independent spatial channels of light along optical fibres to expand the data-carrying capacity of optical communications. Recent results achieved in both multicore and multimode optical fibres are documented.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , , & in Proc. Opt. Fiber Commun. Conf. paper WB1 (OSA, 1979).

  2. 2.

    & Mode division multiplexing in optical fibers. App. Opt. 21, 1950–1955 (1982).

  3. 3.

    New fibers for ultra-high capacity transport. Opt. Fiber Technol. 17, 495–502 (2011).

  4. 4.

    et al. Ultimate low loss of hollow-core photonic crystal fibres. Opt. Express 13, 236–244 (2005).

  5. 5.

    et al. in Proc. Opt. Fiber Commun. Conf. paper PDP5A.2 (OSA, 2012).

  6. 6.

    et al. Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm. Opt. Express 13, 8452–8459 (2005).

  7. 7.

    et al. Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers. Opt. Express 9, 748–779 (2001).

  8. 8.

    et al. High-energy (nanojoule) femtosecond pulse delivery with record dispersion higher-order mode fiber. Opt. Lett. 30, 3225–3227 (2005).

  9. 9.

    , , & Spatially and spectrally resolved imaging of modal content in large-mode-area fibers. Opt. Express 16, 7233–7243 (2008).

  10. 10.

    & Tapered fiber bundles for coupling light into and out of cladding-pumped fiber devices. US Patent 5,864,644 (1999).

  11. 11.

    , & High power fiber lasers: current status and future perspectives. J. Opt. Soc. Am. B 27, 63–92 (2010).

  12. 12.

    , , & Multimode fiber devices with single-mode performance. Opt. Lett. 30, 2545–2547 (2005).

  13. 13.

    & Numerical analysis of light propagation in image fibers or coherent fiber bundles. Opt. Express 15, 2151–2165 (2007).

  14. 14.

    & Capacity trends and limits of optical communication networks. Proc. IEEE 100, 1035–1055 (2012).

  15. 15.

    & Nonlinear limits to the information capacity of optical fibre communications. Nature 411, 1027–1030 (2001).

  16. 16.

    Energy-efficient optical transport capacity scaling through spatial multiplexing. IEEE Photon. Tech. Lett. 23, 851–853 (2011).

  17. 17.

    et al. Enhancing optical communications with brand new fibers. IEEE Com. Mag. 50, S31–S42 (2012).

  18. 18.

    , & Heterogeneous multi-core fibers: proposal and design principles. IEICE Electron. Express 6, 98–103 (2009).

  19. 19.

    , , , & Crosstalk in multicore fibers with randomness: gradual drift vs. short-length variations. Opt. Express, 20, 949–959 (2012).

  20. 20.

    , , , & in Proc. Euro. Conf. Opt. Commun. paper Tu.5.B.7 (IEEE, 2011).

  21. 21.

    , , , & Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber. Opt. Express 19, 16576–16592 (2011).

  22. 22.

    et al. in Proc. Euro. Conf. Opt. Commun. paper Th3.C.1 (IEEE, 2012).

  23. 23.

    et al. in Proc. Opt. Fiber Commun. Conf. paper PDP5C (OSA, 2012).

  24. 24.

    Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Tech. J. 1, 41–59 (1996).

  25. 25.

    Digital coherent optical receivers: algorithms and subsystems. IEEE J. Sel. Top. Quant. Electron. 16, 1164–1179 (2010).

  26. 26.

    et al. 6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization. Opt. Express 19, 16697–16707 (2011).

  27. 27.

    et al. DSP complexity of mode-division multiplexed receivers. Opt. Express 20, 10859–10869 (2012).

  28. 28.

    & Adaptive frequency domain equalization for mode-division multiplexed transmission. IEEE Photon. Tech. Lett. 24, 1918–1921 (2012).

  29. 29.

    et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photon. 6, 488–496 (2012).

  30. 30.

    et al. in Proc. Euro. Conf. Opt. Commun. paper Th.3.C.6 (IEEE, 2012).

  31. 31.

    et al. Few mode transmission fiber with low DGD, low mode coupling, and low loss. IEEE J. Lightwave Tech. 30, 3693–3698 (2012).

  32. 32.

    et al. Mode-division multiplexed transmission with inline few mode fiber amplifier. Opt. Express 20, 2668–2680 (2012).

  33. 33.

    , , & in Proc. Opt. Fiber Commun. Conf. paper OM2D (OSA, 2012).

  34. 34.

    et al. in Proc. Euro. Conf. Opt. Commun. paper Th.3.C.4 (IEEE, 2012).

  35. 35.

    et al. in Proc. National Fiber Opt. Eng. Conf. paper PDP5C.5 (OSA, 2012).

  36. 36.

    et al. in Proc. Frontiers in Optics paper FW6C.4. (OSA, 2012).

  37. 37.

    et al. in Proc. Euro. Conf. Opt. Commun. paper Th.13.C.3 (IEEE, 2011).

  38. 38.

    & Statistics of group delays in multimode fiber with strong mode coupling. IEEE J. Lightwave Tech. 29, 3119–3128 (2011).

  39. 39.

    & Delay-spread distribution for multimode fiber with strong mode coupling. IEEE Photon. Tech. Lett. 24, 1906–1909 (2012).

  40. 40.

    & in Proc. IEEE Photon. Soc. Summer Topical Meeting Series paper TuC3.4 (IEEE, 2012).

  41. 41.

    et al. Impact of mode coupling on the mode-dependent loss tolerance in few-mode fiber transmission. Opt. Express 20, 29776–29783 (2012).

  42. 42.

    , , & Nonlinear effects in mode-division-multiplexed transmission over few-mode optical fiber. IEEE Photon. Tech. Lett. 23, 1316–1318 (2011).

  43. 43.

    , , Analytical description of cross-modal nonlinear interaction in mode multiplexed multimode fibers. IEEE Photon. Tech. Lett. 24, 1929–1931 (2012).

  44. 44.

    , & Nonlinear propagation in multimode and multicore fibers: generalization of the Manakov equations. IEEE J. Lightwave Tech. 31, 398–406 (2013).

  45. 45.

    & Description of ultrashort pulse propagation in multimode optical fibers. J. Opt. Soc. Am. B 25, 1645–1654 (2008).

  46. 46.

    et al. Experimental investigation of inter-modal four-wave mixing in multimode fibers. IEEE Photon. Tech. Lett. 25, 539–542 (2013).

  47. 47.

    et al. in Proc. Euro. Conf. Opt. Commun. paper Th.3.A.5 (IEEE, 2012).

  48. 48.

    et al. in Proc. Euro. Conf. Opt. Commun. Th.3.A.3 (IEEE, 2012).

  49. 49.

    et al. MIMO-based crosstalk suppression in spatially multiplexed 3 × 56-Gb/s PDM-QPSK signals for strongly coupled three-core fiber. IEEE Photon. Tech. Lett. 23, 1469–1471 (2011).

  50. 50.

    et al. in Proc. Euro. Conf. Opt. Commun. paper Th.13.C.1 (IEEE, 2011).

  51. 51.

    , & Reduction of nonlinear penalties due to linear coupling in multicore optical fibers. IEEE Photon. Tech. Lett. 24, 1574–1576 (2012).

  52. 52.

    , & in Proc. Opto-Electron. Commun. Conf. 562–563 (IEEE, 2012).

  53. 53.

    , , & in Proc. Euro. Conf. Opt. Commun. paper Th.2.D (IEEE, 2012).

  54. 54.

    , & in Proc. IEEE Photon. Soc. Summer Topical Meeting Series (IEEE, 2012).

  55. 55.

    & All optical mode-multiplexing using holography and multimode fiber couplers. IEEE J. Lightwave Tech. 30, 1978–1984 (2012).

  56. 56.

    et al. in Proc. Euro. Conf. Opt. Commun. paper Th.12.B.2 (IEEE, 2011).

  57. 57.

    Optical amplification and optical filter based signal processing for cost and energy efficient spatial multiplexing. Opt. Express 19, 16636–16652 (2011).

  58. 58.

    et al. in Proc. Euro. Conf. Opt. Commun. paper Th.13.K.4 (IEEE, 2011).

  59. 59.

    et al. Modeling and characterization of a few-mode EDFA supporting four mode groups for mode division multiplexing. Opt. Express 20, 27051–27061 (2012).

  60. 60.

    et al. Joint digital signal processing receivers for spatial superchannels. IEEE Photon. Tech. Lett. 24, 1957–1959 (2012).

  61. 61.

    , , , & Reception of mode-division multiplexed superchannel via few-mode compatible optical add/drop multiplexer. Opt. Express 20, 14302–14307 (2012).

  62. 62.

    , & Dynamic multidimensional optical networking based on spatial and spectral processing. Opt. Express 20, 9144–9150 (2012).

  63. 63.

    , & in Proc. Euro. Conf. Opt. Commun. paper Tu.3.C.4 (IEEE, 2012).

  64. 64.

    et al. Free-space coupling optics for multi-core fibers. IEEE Photon. Tech. Lett. 24, 1902–1905 (2012).

  65. 65.

    et al. 112-Tb/s space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber. Opt. Express 19, 16665–16671 (2011).

  66. 66.

    , & Low loss optical connection module for seven-core multicore fiber and seven single-mode fibers. IEEE Photon. Tech. Lett. 24, 1926–1928 (2012).

  67. 67.

    , , & in Proc. Opto-Electron. Commun. Conf. (IEEE, 2012).

  68. 68.

    et al. in Proc. Euro. Conf. Opt. Commun. paper We.10.P1.74 (IEEE, 2011).

  69. 69.

    et al. Cladding-pumped erbium-doped multicore fiber amplifier. Opt. Express 20, 20191–20200 (2012).

  70. 70.

    et al. in Proc. Euro. Conf. Opt. Commun. paper Tu.4.F (IEEE, 2012).

  71. 71.

    et al. in Proc. IEEE Photon. Soc. Summer Topical Meeting Series (IEEE, 2010).

  72. 72.

    et al. End-to-end multicore multimode fiber optic link operating up to 120 Gb/s. IEEE J. Lightwave Tech. 30, 886–892 (2012).

  73. 73.

    & Silicon photonics core-, wavelength-, and polarization-diversity receiver. IEEE Photon. Tech. Lett. 23, 597–599 (2011).

  74. 74.

    et al. in Proc. IEEE Photon. Soc. Summer Topical Meeting Series (IEEE, 2012).

  75. 75.

    et al. Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices. Opt. Express 20, 9396–9402 (2012).

  76. 76.

    et al. Integrated compact optical vortex beam emitters. Science 338, 363–366 (2012).

  77. 77.

    , , & in Proc. IEEE Photon. Soc. Summer Topical Meeting Series (IEEE, 2012).

  78. 78.

    , , , & in Proc. IEEE Photon. Soc. Summer Topical Meeting Series (IEEE, 2012).

  79. 79.

    , , , & in Proc. Int. Wire Cable Symp. 203–209 (IWCS, 1994).

  80. 80.

    , , & Multichannel transmission of a multicore fiber coupled with vertical-cavity surface-emitting lasers. IEEE J. Lightwave Tech. 17, 807–810 (1999).

  81. 81.

    et al. Seven-core multicore fiber transmissions for passive optical network. Opt. Express 18, 11117–11122 (2010).

  82. 82.

    et al. 70-Gb/s multicore multimode fiber transmissions for optical data links. IEEE Photon. Tech. Lett. 22, 1647–1649 (2010).

  83. 83.

    et al. in Proc. Opt. Fiber Commun. Conf. paper PDPB7 (OSA, 2011).

  84. 84.

    et al. in Proc. Opt. Fiber Commun. Conf. paper PDPB6 (OSA, 2011).

  85. 85.

    et al. 112-Tb/s space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber. Opt. Express 19, 16665–16671 (2011).

  86. 86.

    et al. in Proc. Euro. Conf. Opt. Commun. paper Th.13.C.4. (IEEE, 2011).

  87. 87.

    et al. in Proc. Euro. Conf. Opt. Commun. paper Th.13.B.1 (IEEE, 2011).

  88. 88.

    et al. in Proc. Euro. Conf. Opt. Commun. paper Th.2.C.2 (IEEE, 2012).

  89. 89.

    et al. in Proc. Euro. Conf. Opt. Commun. paper Th.3.C.3 (IEEE, 2012).

  90. 90.

    Dispersive multiplexing in multimode optical fiber. Science 289, 281–283 (2000).

  91. 91.

    et al. Coherent optical MIMO (COMIMO). IEEE J. Lightwave Tech. 23, 2410–2419 (2005).

  92. 92.

    in Proc. Opt. Fiber Commun. Conf. paper OThM6 (OSA, 2012).

  93. 93.

    , , , & in Proc. Euro. Conf. Opt. Commun. paper Tu3C4 (IEEE, 2010).

  94. 94.

    & MIMO capacities and outage probabilities in spatially multiplexed optical transport systems. Opt. Express 19, 16680–16696 (2011).

  95. 95.

    , , & in Proc. Opt. Fiber Commun. Conf. paper PDPB8 (OSA, 2011).

  96. 96.

    et al. in Proc. Opt. Fiber Commun. Conf. paper PDPB9 (OSA, 2011).

  97. 97.

    et al. in Proc. Opt. Fiber Commun. Conf. paper PDPB10 (OSA, 2011).

  98. 98.

    et al. Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 MIMO processing. IEEE J. Lightwave Tech. 30, 521–531 (2012).

  99. 99.

    et al. in Proc. Euro. Conf. Opt. Commun. paper Th.13.C.2 (IEEE, 2011).

  100. 100.

    et al. in Proc. Opt. Fiber Commun. Conf. paper OTu2C.4 (OSA, 2012).

  101. 101.

    et al. Combined wavelength- and mode-multiplexed transmission over a 209-km DGD-compensated hybrid few-mode fiber span. IEEE Photon. Tech. Lett. 24, 1965–1968 (2012).

  102. 102.

    et al. 73.7 Tb/s (96×3×256-Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MM-EDFA. Opt. Express 20, B428–B438 (2012).

  103. 103.

    et al. in Proc. Euro. Conf. Opt. Commun. paper Tu.5.B.1 (IEEE, 2011).

  104. 104.

    et al. in Proc. Opt. Fiber Commun. Conf. paper PDP5C.2 (OSA, 2012).

  105. 105.

    et al. Hole-assisted few-mode multicore fiber for high-density space-division multiplexing. IEEE Photon. Tech. Lett. 24, 1914–1916 (2012).

  106. 106.

    et al. in Proc. IEEE Summer Topical Meeting on SDM paper TuC1.2 (IEEE, 2012).

  107. 107.

    et al. in Proc. Frontiers in Optics paper FW6C.3 (OSA, 2012).

  108. 108.

    et al. in Proc. Euro. Conf. Opt. Commun. paper Th.3.D.3 (IEEE, 2012).

  109. 109.

    et al. in Proc. Opt. Fiber Commun. Conf. paper PDP5B.8 (OSA, 2013).

  110. 110.

    et al. in Proc. Opt. Fiber Commun. Conf. paper PDP5A.3 (OSA, 2013).

  111. 111.

    et al. in Proc. Opt. Fiber Commun. Conf. paper PDP5A.1 (OSA, 2013).

  112. 112.

    et al. in Proc. Opt. Fiber Commun. Conf. paper PDP5A.2 (OSA, 2013).

Download references

Acknowledgements

D.J.R. thanks his colleagues and collaborators on the European Union Framework 7 funded MODEGAP project (258033) and the UK Engineering and Physical Sciences Research Council (EPSRC) funded Hyperhighway project (EP/I01196X/1) for discussions.

Author information

Affiliations

  1. Optoelectronics Research Centre, University of Southampton, Highfield, Southampton, SO17 1BJ, UK

    • D. J. Richardson
  2. OFS Laboratories, 19 Schoolhouse Road, Somerset, New Jersey 08873, USA

    • J. M. Fini
  3. AT&T Labs Research, 200 S. Laurel Avenue, Middletown, New Jersey 07747, USA

    • L. E. Nelson

Authors

  1. Search for D. J. Richardson in:

  2. Search for J. M. Fini in:

  3. Search for L. E. Nelson in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to D. J. Richardson.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nphoton.2013.94

Further reading