Article | Published:

Direct and full-scale experimental verifications towards ground–satellite quantum key distribution

Nature Photonics volume 7, pages 387393 (2013) | Download Citation

Abstract

Quantum key distribution (QKD) provides the only intrinsically unconditional secure method for communication based on the principle of quantum mechanics. Compared with fibre-based demonstrations, free-space links could provide the most appealing solution for communication over much larger distances. Despite significant efforts, all realizations to date rely on stationary sites. Experimental verifications are therefore extremely crucial for applications to a typical low Earth orbit satellite. To achieve direct and full-scale verifications of our set-up, we have carried out three independent experiments with a decoy-state QKD system, and overcome all conditions. The system is operated on a moving platform (using a turntable), on a floating platform (using a hot-air balloon), and with a high-loss channel to demonstrate performances under conditions of rapid motion, attitude change, vibration, random movement of satellites, and a high-loss regime. The experiments address wide ranges of all leading parameters relevant to low Earth orbit satellites. Our results pave the way towards ground–satellite QKD and a global quantum communication network.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing 175–179 (IEEE, 1984).

  2. 2.

    , , & Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

  3. 3.

    et al. Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors. Nature Photon. 1, 343–348 (2007).

  4. 4.

    et al. High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres. New J. Phys. 11, 075003 (2009).

  5. 5.

    et al. Decoy-state quantum key distribution with polarized photons over 200 km. Opt. Express 18, 8587–8594 (2010).

  6. 6.

    et al. A step towards global key distribution. Nature 419, 450 (2002).

  7. 7.

    , , & Practical free-space quantum key distribution over 10 km in daylight and at night. New J. Phys. 4, 43 (2002).

  8. 8.

    et al. Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication. Phys. Rev. Lett. 94, 150501 (2005).

  9. 9.

    , & Free-space quantum key distribution with entangled photons. Appl. Phys. Lett. 89, 101122 (2006).

  10. 10.

    et al. Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98, 010504 (2007).

  11. 11.

    et al. Entanglement-based quantum communication over 144 km. Nature Phys. 3, 481–486 (2007).

  12. 12.

    et al. High-fidelity transmission of entanglement over a high-loss free-space channel. Nature Phys. 5, 389–392 (2009).

  13. 13.

    et al. Experimental free-space quantum teleportation. Nature Photon. 4, 376–381 (2010).

  14. 14.

    et al. The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009).

  15. 15.

    et al. Experimental verification of the feasibility of a quantum channel between space and Earth. New J. Phys. 10, 033038 (2008).

  16. 16.

    , , , & Feasibility of satellite quantum key distribution. New J. Phys. 11, 045017 (2009).

  17. 17.

    , , , & Present and future free-space quantum key distribution. Proc. SPIE 4635, 116–126 (2002).

  18. 18.

    et al. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488, 185–188 (2012).

  19. 19.

    et al. Quantum teleportation over 143 kilometres using active feed-forward. Nature 489, 269–273 (2012).

  20. 20.

    , , & Ground to satellite secure key exchange using quantum cryptography. New J. Phys. 4, 82 (2002).

  21. 21.

    , , , & in Proceedings of Updating Quantum Cryptography and Communications 2010, 71–72 (2010).

  22. 22.

    Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003).

  23. 23.

    Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005).

  24. 24.

    , & Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005).

  25. 25.

    , , & Practical decoy state for quantum key distribution. Phys. Rev. A 72, 012326 (2005).

  26. 26.

    , , , & Experimental quantum key distribution with decoy states. Phys. Rev. Lett. 96, 070502 (2006).

  27. 27.

    et al. Experimental long-distance decoy-state quantum key distribution based on polarization encoding. Phys. Rev. Lett. 98, 010505 (2007).

  28. 28.

    et al. Long-distance decoy-state quantum key distribution in optical fiber. Phys. Rev. Lett. 98, 010503 (2007).

  29. 29.

    Decoy-state protocol for quantum cryptography with four different intensities of coherent light. Phys. Rev. A 72, 012322 (2005).

  30. 30.

    , , & Quantum Inf. Comput. 4, 325–360 (2004).

  31. 31.

    et al. Air to ground quantum key distribution, abstract, Conference on Quantum Cryptography (2012); available at

Download references

Acknowledgements

The authors thank the staff of the Qinghai Lake National Natural Reserve Utilization Administration Bureau, especially Y-B. He and Z. Xing, for their support during the experiment. This work was supported by the Chinese Academy of Sciences, the National Natural Science Foundation of China, and the National Fundamental Research Program (grant no. 2011CB921300).

Author information

Author notes

    • Jian-Yu Wang
    •  & Bin Yang

    These authors contributed equally to this work

Affiliations

  1. Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China

    • Jian-Yu Wang
    • , Bin Yang
    • , Sheng-Kai Liao
    • , Qi Shen
    • , Xiao-Fang Hu
    • , Yan-Lin Tang
    • , Hao Liang
    • , Ji-Gang Ren
    • , Ge-Sheng Pan
    • , Juan Yin
    • , Yu-Ao Chen
    • , Kai Chen
    • , Cheng-Zhi Peng
    •  & Jian-Wei Pan
  2. Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China

    • Jian-Yu Wang
    • , Sheng-Kai Liao
    • , Liang Zhang
    • , Jin-Cai Wu
    • , Shi-Ji Yang
    • , Hao Jiang
    • , Yi-Hua Hu
    •  & Jian-Jun Jia
  3. College of Information Science and Engineering, Ningbo University, Ningbo 315211, China

    • Bo Zhong
    •  & Wei-Yue Liu
  4. The Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China

    • Yong-Mei Huang
    •  & Bo Qi

Authors

  1. Search for Jian-Yu Wang in:

  2. Search for Bin Yang in:

  3. Search for Sheng-Kai Liao in:

  4. Search for Liang Zhang in:

  5. Search for Qi Shen in:

  6. Search for Xiao-Fang Hu in:

  7. Search for Jin-Cai Wu in:

  8. Search for Shi-Ji Yang in:

  9. Search for Hao Jiang in:

  10. Search for Yan-Lin Tang in:

  11. Search for Bo Zhong in:

  12. Search for Hao Liang in:

  13. Search for Wei-Yue Liu in:

  14. Search for Yi-Hua Hu in:

  15. Search for Yong-Mei Huang in:

  16. Search for Bo Qi in:

  17. Search for Ji-Gang Ren in:

  18. Search for Ge-Sheng Pan in:

  19. Search for Juan Yin in:

  20. Search for Jian-Jun Jia in:

  21. Search for Yu-Ao Chen in:

  22. Search for Kai Chen in:

  23. Search for Cheng-Zhi Peng in:

  24. Search for Jian-Wei Pan in:

Contributions

C-Z.P and J-W.P. conceived the idea for the experiments. J-Y.W., C-Z.P. and J-W.P. designed the experiments. B.Y., S-K.L., Q.S., X-F.H., J-C.W., H.L., J.Y., J-G.R., G-S.P. and C-Z.P. designed the QKD devices. J-Y.W., S-K.L., L.Z., J-C.W., S-J.Y., H.J., Y-H.H., Y-M.H., B.Q., J-J.J. and C-Z.P. designed the ATP devices. S-K.L., L.Z., X-F.H., Y-L.T., B.Z. and W-Y.L. designed the software. All authors performed the experiments. B.Y., W-Y.L., K.C., Y-A.C., C-Z.P. and J-W.P. analysed the data. B.Y., K.C., Y-A.C., C-Z.P. and J-W.P. wrote the paper. J-W.P. supervised the entire project.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Cheng-Zhi Peng or Jian-Wei Pan.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2013.89

Further reading