Experimental observation of the optical spin–orbit torque

Article metrics

Abstract

Electrical and optical control of magnetization are of central importance in the research and applications of spintronics. Non-relativistic angular momentum transfer or relativistic spin–orbit coupling provide efficient means by which electrical current driven through a ferromagnet can exert a torque on the magnetization. Ferromagnetic semiconductors like (Ga,Mn)As are suitable model systems with which to search for optical counterparts of these phenomena, where photocarriers excited by a laser pulse exert torque upon magnetization. Here, we report the observation of an optical spin–orbit torque (OSOT) in (Ga,Mn)As. The phenomenon originates from spin–orbit coupling of non-equilibrium photocarriers excitated by helicity-independent pump laser pulses, which do not impart angular momentum. In our measurements of the time-dependent magnetization trajectories, the signatures of OSOT are clearly distinct from the competing thermal excitation mechanism, and OSOT can even dominate in (Ga,Mn)As materials with appropriately controlled micromagnetic parameters.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic illustration and experimental observation of OSOT.
Figure 2: Direct experimental reconstruction of the magnetization trajectory from MO signals.
Figure 3: Characterization of 3% Mn-doped (Ga,Mn)As.
Figure 4: Suppression of the damping and thermal excitation mechanism by magnetic field.
Figure 5: Suppression of the thermal excitation mechanism at higher Mn dopings.

References

  1. 1

    Berger, L. Exchange interaction between ferromagnetic domain wall and electric current in very thin metallic films. J. Appl. Phys. 55, 1954–1956 (1984).

  2. 2

    Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

  3. 3

    Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

  4. 4

    Chappert, C., Fert, A. & Dau, F. N. V. The emergence of spin electronics in data storage. Nature Mater. 6, 813–823 (2007).

  5. 5

    Ralph, D. & Stiles, M. Spin transfer torques. J. Magn. Magn. Mater. 320, 1190–1216 (2008).

  6. 6

    Brataas, A., Kent, A. D. & Ohno, H. Current-induced torques in magnetic materials. Nature Mater. 11, 372–381 (2012).

  7. 7

    Němec, P. et al. Experimental observation of the optical spin transfer torque. Nature Phys. 8, 411–415 (2012).

  8. 8

    Fernández-Rossier, J., Núñez, A. S., Abolfath, M. & MacDonald, A. H. Optical spin transfer in ferromagnetic semiconductors. Preprint at http://lanl.arXiv.org/abs/cond-mat/0304492 (2003).

  9. 9

    Núñez, A. S., Fernández-Rossier, J., Abolfath, M. & MacDonald, A. H. Optical control of the magnetization damping in ferromagnetic semiconductors. J. Magn. Magn. Mater. 272–276, 1913–1914 (2004).

  10. 10

    Manchon, A. & Zhang, S. Theory of nonequilibrium intrinsic spin torque in a single nanomagnet. Phys. Rev. B 78, 212405 (2008).

  11. 11

    Manchon, A. & Zhang, S. Theory of spin torque due to spin–orbit coupling. Phys. Rev. B 79, 094422 (2009).

  12. 12

    Garate, I. & MacDonald, A. H. Influence of a transport current on magnetic anisotropy in gyrotropic ferromagnets. Phys. Rev. B 80, 134403 (2010).

  13. 13

    Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nature Phys. 5, 656–659 (2009).

  14. 14

    Miron, I. M. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nature Mater. 9, 230–234 (2010).

  15. 15

    Fang, D. et al. Spin–orbit driven ferromagnetic resonance: a nanoscale magnetic characterization technique. Nature Nanotech. 6, 413–417 (2011).

  16. 16

    Jungwirth, T., Sinova, J., Mašek, J., Kučera, J. & MacDonald, A. H. Theory of ferromagnetic (III,Mn)V semiconductors. Rev. Mod. Phys. 78, 809–864 (2006).

  17. 17

    Oiwa, A., Takechi, H. & Munekata, H. Photoinduced magnetization rotation and precessional motion of magnetization in ferromagnetic (Ga,Mn)As. J. Supercond. Nov. Magn. 18, 9–13 (2005).

  18. 18

    Wang, D. M. et al. Light-induced magnetic precession in (Ga,Mn)As slabs: hybrid standing-wave Damon–Eshbach modes. Phys. Rev. B 75, 233308 (2007).

  19. 19

    Takechi, H., Oiwa, A., Nomura, K., Kondo, T. & Munekata, H. Light-induced precession of ferromagnetically coupled Mn spins in ferromagnetic (Ga,Mn)As. Phys. Status Solidi C 3, 4267–4270 (2007).

  20. 20

    Qi, J. et al. Coherent magnetization precession in GaMnAs induced by ultrafast optical excitation. Appl. Phys. Lett. 91, 112506 (2007).

  21. 21

    Qi, J. et al. Ultrafast laser-induced coherent spin dynamics in ferromagnetic Ga1–xMnxAs/GaAs structures. Phys. Rev. B 79, 085304 (2009).

  22. 22

    Rozkotová, E. et al. Light-induced magnetization precession in GaMnAs. Appl. Phys. Lett. 92, 122507 (2008).

  23. 23

    Rozkotová, E. et al. Coherent control of magnetization precession in ferromagnetic semiconductor (Ga,Mn)As. Appl. Phys. Lett. 93, 232505 (2008).

  24. 24

    Hashimoto, Y. & Munekata, H. Coherent manipulation of magnetization precession in ferromagnetic semiconductor (Ga,Mn)As with successive optical pumping. Appl. Phys. Lett. 93, 202506 (2008).

  25. 25

    Hashimoto, Y., Kobayashi, S. & Munekata, H. Photoinduced precession of magnetization in ferromagnetic (Ga,Mn)As. Phys. Rev. Lett. 100, 067202 (2008).

  26. 26

    Kobayashi, S., Suda, K., Aoyama, J., Nakahara, D. & Munekata, H. Photo-induced precession of magnetization in metal/(Ga,Mn)As systems. IEEE Trans. Magn. 46, 2470–2473 (2010).

  27. 27

    Yildirim, M. et al. Interband dephasing and photon echo response in gamnas. Appl. Phys. Lett. 101, 062403 (2012).

  28. 28

    Wang, J. et al. Ultrafast magneto-optics in ferromagnetic IIIV semiconductors. J. Phys. Condens. Matter 18, R501–R530 (2006).

  29. 29

    Kirilyuk, A., Kimel, A. V. & Rasing, T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731–2784 (2010).

  30. 30

    Tesařová, N. et al. Direct measurement of the three dimensional magnetization vector trajectory in GaMnAs by a magneto-optical pump-and-probe method. Appl. Phys. Lett. 100, 102403 (2012).

  31. 31

    Němec, P. et al. The essential role of carefully optimized synthesis for elucidating intrinsic material properties of (Ga,Mn)As. Nature Commun. 4, 1422 (2013).

  32. 32

    Zemen, J., Kučera, J., Olejník, K. & Jungwirth, T. Magneto crystalline anisotropies in (Ga,Mn)As: a systematic theoretical study and comparison with experiment. Phys. Rev. B 80, 155203 (2009).

  33. 33

    Gray, A. X. et al. Bulk electronic structure of the dilute magnetic semiconductor GaMnAs through hard X-ray angle-resolved photoemission. Nature Mater. 11, 957–962 (2012).

  34. 34

    Ohya, S., Takata, K. & Tanaka, M. Nearly non-magnetic valence band of the ferromagnetic semiconductor GaMnAs. Nature Phys. 7, 342–347 (2011).

  35. 35

    Chiba, D. et al. Magnetization vector manipulation by electric fields. Nature 455, 515–518 (2008).

  36. 36

    Owen, M. H. S. et al. Low voltage control of ferromagnetism in a semiconductor p–n junction. New J. Phys. 11, 023008 (2009).

  37. 37

    Ganichev, S. D. et al. Zero-bias spin separation. Nature Phys. 2, 609–613 (2006).

  38. 38

    Tarasenko, S. A. Optical orientation of electron spins by linearly polarized light. Phys. Rev. B 72, 113302 (2005).

  39. 39

    Jungwirth, T. et al. Demonstration of molecular beam epitaxy and a semiconducting band structure for I–Mn–V compounds. Phys. Rev. B 83, 035321 (2011).

  40. 40

    Park, B. G. et al. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nature Mater. 10, 347–351 (2011).

Download references

Acknowledgements

The authors acknowledge discussions with A.H. MacDonald, J. Sinova and J. Wunderlich, and support from the European Research Council (advanced grant no. 268066), Framework Programme 7 (grant no. 215368), the Engineering and Physical Sciences Research Council (grant no. EP/H029257/1), the Ministry of Education of the Czech Republic (grant no. LM2011026), the Grant Agency of the Czech Republic (grant nos. 202/09/H041 and P204/12/0853), the Charles University in Prague (grant nos. SVV-2012-265306 and 443011) and the Academy of Sciences of the Czech Republic Praemium Academiae.

Author information

V.N. and K.O. prepared the samples. N.T., P.N., E.R., T.Ja., D.B., P.M., K.O. and T.Ju. conducted the experiments and analysed the measured data. P.N. and F.T. performed data modelling. J.Z. and T.Ju. developed the microscopic theory and performed the calculations. P.N. and T.Ju wrote the manuscript.

Correspondence to P. Němec.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3745 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tesařová, N., Němec, P., Rozkotová, E. et al. Experimental observation of the optical spin–orbit torque. Nature Photon 7, 492–498 (2013) doi:10.1038/nphoton.2013.76

Download citation

Further reading