Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Optical two-way time and frequency transfer over free space

Abstract

The transfer of high-quality time–frequency signals between remote locations underpins many applications, including precision navigation and timing, clock-based geodesy, long-baseline interferometry, coherent radar arrays, tests of general relativity and fundamental constants, and future redefinition of the second1,2,3,4,5,6,7. However, present microwave-based time–frequency transfer8,9,10 is inadequate for state-of-the-art optical clocks and oscillators1,11,12,13,14,15,16 that have femtosecond-level timing jitter and accuracies below 1 × 10−17. Commensurate optically based transfer methods are therefore needed. Here we demonstrate optical time–frequency transfer over free space via two-way exchange between coherent frequency combs, each phase-locked to the local optical oscillator. We achieve 1 fs timing deviation, residual instability below 1 × 10−18 at 1,000 s and systematic offsets below 4 × 10−19, despite frequent signal fading due to atmospheric turbulence or obstructions across the 2 km link. This free-space transfer can enable terrestrial links to support clock-based geodesy. Combined with satellite-based optical communications, it provides a path towards global-scale geodesy, high-accuracy time–frequency distribution and satellite-based relativity experiments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical two-way time–frequency transfer.
Figure 2: Example data.
Figure 3: Power spectral densities.
Figure 4: Precision (residual Allan deviation) and offset of the optical TWTFT, evaluated over multiple data sets covering 24 h of acquisition.

Similar content being viewed by others

References

  1. Chou, C. W., Hume, D. B., Rosenband, T. & Wineland, D. J. Optical clocks and relativity. Science 329, 1630–1633 (2010).

    Article  ADS  Google Scholar 

  2. Bondarescu, R. et al. Geophysical applicability of atomic clocks: direct continental geoid mapping. Geophys. J. Int. 191, 78–82 (2012).

    Article  ADS  Google Scholar 

  3. Müller, J., Soffel, M. & Klioner, S. Geodesy and relativity. J. Geod. 82, 133–145 (2008).

    Article  ADS  Google Scholar 

  4. Schiller, S. et al. Einstein gravity explorer—a medium-class fundamental physics mission. Exp. Astron. 23, 573–610 (2009).

    Article  ADS  Google Scholar 

  5. Wolf, P. et al. Quantum physics exploring gravity in the outer solar system: the SAGAS project. Exp. Astron. 23, 651–687 (2009).

    Article  ADS  Google Scholar 

  6. Uzan, J. The fundamental constants and their variation: observational and theoretical status. Rev. Mod. Phys. 75, 403–455 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  7. Gill, P. When should we change the definition of the second? Phil. Trans. R. Soc. A 369, 4109–4130 (2011).

    Article  ADS  Google Scholar 

  8. Bauch, A. et al. Comparison between frequency standards in Europe and the USA at the 10−15 uncertainty level. Metrologia 43, 109–120 (2006).

    Article  ADS  Google Scholar 

  9. Samain, E. et al. The T2L2 ground experiment time transfer in the picosecond range over a few kilometres. Proceedings of the 20th European Frequency and Time Forum 538–544 (2006).

  10. Cacciapuoti, L. & Salomon, C. Space clocks and fundamental tests: the ACES experiment. Eur. Phys. J. Special Topics 172, 57–68 (2009).

    Article  ADS  Google Scholar 

  11. Chou, C. W., Hume, D. B., Koelemeij, J. C. J., Wineland, D. J. & Rosenband, T. Frequency comparison of two high-accuracy Al+ optical clocks. Phys. Rev. Lett. 104, 070802 (2010).

    Article  ADS  Google Scholar 

  12. Katori, H. Optical lattice clocks and quantum metrology. Nature Photon. 5, 203–210 (2011).

    Article  ADS  Google Scholar 

  13. Ludlow, A. D. et al. Sr lattice clock at 1 × 10−16 fractional uncertainty by remote optical evaluation with a Ca clock. Science 319, 1805–1808 (2008).

    Article  ADS  Google Scholar 

  14. Fortier, T. M. et al. Generation of ultrastable microwaves via optical frequency division. Nature Photon. 5, 425–429 (2011).

    Article  ADS  Google Scholar 

  15. Jiang, Y. Y. et al. Making optical atomic clocks more stable with 10−16-level laser stabilization. Nature Photon. 5, 158–161 (2011).

    Article  ADS  Google Scholar 

  16. Yamaguchi, A. et al. Direct comparison of distant optical lattice clocks at the 10−16 uncertainty. Appl. Phys. Express 4, 082203 (2011).

    Article  ADS  Google Scholar 

  17. Predehl, K. et al. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place. Science 336, 441–444 (2012).

    Article  ADS  Google Scholar 

  18. Lopez, O. et al. Simultaneous remote transfer of accurate timing and optical frequency over a public fiber network. Appl. Phys. B 110, 3–6 (2013).

    Article  ADS  Google Scholar 

  19. Sprenger, B., Zhang, J., Lu, Z. H. & Wang, L. J. Atmospheric transfer of optical and radio frequency clock signals. Opt. Lett. 34, 965–967 (2009).

    Article  ADS  Google Scholar 

  20. Djerroud, K. et al. Coherent optical link through the turbulent atmosphere. Opt. Lett. 35, 1479–1481 (2010).

    Article  ADS  Google Scholar 

  21. Andrews, L. C. & Phillips, R. L. Laser Beam Propagation through Random Media (SPIE Press, 1998).

    Google Scholar 

  22. Coddington, I., Swann, W. C., Nenadovic, L. & Newbury, N. R. Rapid and precise absolute distance measurements at long range. Nature Photon. 3, 351–356 (2009).

    Article  ADS  Google Scholar 

  23. Kim, J., Cox, J. A., Chen, J. & Kärtner, F. X. Drift-free femtosecond timing synchronization of remote optical and microwave sources. Nature Photon. 2, 733–736 (2008).

    Article  ADS  Google Scholar 

  24. Lee, J., Kim, Y. J., Lee, K., Lee, S. & Kim, S. W. Time-of-flight measurement with femtosecond light pulses. Nature Photon. 4, 716–720 (2010).

    Article  ADS  Google Scholar 

  25. Shapiro, J. H. Reciprocity of the turbulent atmosphere. J. Opt. Soc. Am. 61, 492–495 (1971).

    Article  ADS  Google Scholar 

  26. Parenti, R. R., Michael, S., Roth, J. M. & Yarnall, T. M. Comparisons of Cn2 measurements and power-in-fiber data from two long-path free-space optical communication experiments. Proc. SPIE 7814, 78140Z (2010).

    Article  ADS  Google Scholar 

  27. Marra, G. et al. High-resolution microwave frequency transfer over an 86-km-long optical fiber network using a mode-locked laser. Opt. Lett. 36, 511–513 (2011).

    Article  ADS  Google Scholar 

  28. Roy, J., Deschênes, J-D., Potvin, S. & Genest, J. Continuous real-time correction and averaging for frequency comb interferometry. Opt. Express 20, 21932–21939 (2012).

    Article  ADS  Google Scholar 

  29. Giorgetta, F. R. et al. in CLEO: Applications and Technology CTh5D.10 (Optical Society of America, 2012).

    Google Scholar 

  30. Conan, J., Rousset, G. & Madec, P-Y. Wave-front temporal spectra in high-resolution imaging through turbulence. J. Opt. Soc. Am. A 12, 1559–1570 (1995).

    Article  ADS  Google Scholar 

  31. Koishi, Y. et al. in International Conference on Space Optical Systems and Applications (ICSOS) 88–92 (IEEE, 2011).

    Book  Google Scholar 

Download references

Acknowledgements

This work was funded by the Defense Advanced Research Projects Agency (DARPA) QuASAR program and by the National Institute of Standards and Technology (NIST). The authors acknowledge helpful discussions with S. Diddams, J.-D. Deschênes, S. Kaushik, S. Michael, R. Parenti, T. Parker, F. Quinlan and T. Rosenband, and assistance from E. Williams and A. Zolot.

Author information

Authors and Affiliations

Authors

Contributions

W.C.S., L.C.S., I.C., E.B., F.R.G. and N.R.N. set up and operated the measurement system. F.R.G. and N.R.N. analysed the TWTF data. L.C.S. and N.R.N. analysed the turbulence data. N.R.N., F.R.G., L.C.S., W.C.S., E.B. and I.C. prepared the manuscript.

Corresponding authors

Correspondence to Fabrizio R. Giorgetta or Nathan R. Newbury.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1253 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giorgetta, F., Swann, W., Sinclair, L. et al. Optical two-way time and frequency transfer over free space. Nature Photon 7, 434–438 (2013). https://doi.org/10.1038/nphoton.2013.69

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.69

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing