Plasmonic nano-protractor based on polarization spectro-tomography

Article metrics

Abstract

The detection of molecular and nanoparticle labels with nanometre spatial resolution is of great interest for biomolecular and material sciences1,2. Nanosensors capable of monitoring bending and rotations of biomolecules3,4 or characterizing soft materials assembled using DNA as scaffolds5,6 are highly desirable. A powerful idea incorporated in optical spectroscopic rulers is to transduce changes in spatial arrangement into spectral differences. With few exceptions7, current spectroscopic rulers such as fluorescent resonant energy transfer8 and the recently demonstrated plasmonic ruler9 provide merely one-dimensional information about the distance between labelling entities. Here, we propose and demonstrate a three-dimensional spectroscopic nanosensor, called a ‘plasmonic protractor’, based on a plasmonic nanostructure formed between a plasmonic sphere and a nanolabel attached to it. A polarization-resolved scattering technique enables the reconstruction of the nanolabel's location and orientation with deep subdiffraction spatial resolution. This plasmonic far-field, in situ spatial arrangement sensor greatly expands the capability of existing spectroscopic rulers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Conceptual schematics of PST of the MNP/ESO hybrid.
Figure 2: Optical resonances and experimental assembly of an MNP/ESO hybrid.
Figure 3: Experimental application of PST to the nanosphere/nanorod hybrid.
Figure 4: The Fano axis defines the physical orientation of the rod.

References

  1. 1

    Sonnichsen, C. & Alivisatos, A. P. Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy. Nano Lett. 5, 301–304 (2005).

  2. 2

    Chang, W-S., Ha, J. W., Slaughter, L. S. & Link, S. Plasmonic nanorod absorbers as orientation sensors. Proc. Natl Acad. Sci. USA 107, 2781–2786 (2010).

  3. 3

    Yasuda, R., Noji, H., Yoshida, M., Kinosita, K. & Itoh, H. Resolution of distinct rotational substeps by submillisecond kinetic analysis of F-1-ATPase. Nature 410, 898–904 (2001).

  4. 4

    Bryant, Z. et al. Structural transitions and elasticity from torque measurements on DNA. Nature 424, 338–341 (2003).

  5. 5

    Sharma, J. et al. Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science 323, 112–116 (2009).

  6. 6

    Tan, S. J., Campolongo, M. J., Luo, D. & Cheng, W. L. Building plasmonic nanostructures with DNA. Nature Nanotech. 6, 268–276 (2011).

  7. 7

    Liu, N., Hentschel, M., Weiss, T., Alivisatos, A. P. & Giessen, H. Three-dimensional plasmon rulers. Science 332, 1407–1410 (2011).

  8. 8

    Stryer, L. Fluorescence energy-transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819–846 (1978).

  9. 9

    Sonnichsen, C., Reinhard, B. M., Liphardt, J. & Alivisatos, A. P. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nature Biotechnol. 23, 741–745 (2005).

  10. 10

    Verellen, N. et al. Fano resonances in individual coherent plasmonic nanocavities. Nano Lett. 9, 1663–1667 (2009).

  11. 11

    Luk'yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nature Mater. 9, 707–715 (2010).

  12. 12

    Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783–826 (1985).

  13. 13

    Xu, H., Bjerneld, E. J., Käll, M. & Börjesson, L. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 83, 4357–4360 (1999).

  14. 14

    Kühn, S., Håkanson, U., Rogobete, L. & Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006).

  15. 15

    Sokolov, K., Chumanov, G. & Cotton, T. M. Enhancement of molecular fluorescence near the surface of colloidal metal films. Anal. Chem. 70, 3898–3905 (1998).

  16. 16

    Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nature Mater. 7, 442–453 (2008).

  17. 17

    Stewart, M. E. et al. Nanostructured plasmonic sensors. Chem. Rev. 108, 494–521 (2008).

  18. 18

    Klar, T. A. & Feldmann, J. in Complex-Shaped Metal Nanoparticles 395–427 (Wiley-VCH, 2012).

  19. 19

    Ha, T., Laurence, T. A., Chemla, D. S. & Weiss, S. Polarization spectroscopy of single fluorescent molecules. J. Phys. Chem. B 103, 6839–6850 (1999).

  20. 20

    Sick, B., Hecht, B. & Novotny, L. Orientational imaging of single molecules by annular illumination. Phys. Rev. Lett. 85, 4482–4485 (2000).

  21. 21

    Prummer, M., Sick, B., Hecht, B. & Wild, U. P. Three-dimensional optical polarization tomography of single molecules. J. Chem. Phys. 118, 9824–9829 (2003).

  22. 22

    Reinhard, B. M., Sheikholeslami, S., Mastroianni, A., Alivisatos, A. P. & Liphardt, J. Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes. Proc. Natl Acad. Sci. USA 104, 2667–2672 (2007).

  23. 23

    Liu, G. L. et al. A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting. Nature Nanotech. 1, 47–52 (2006).

  24. 24

    Kukura, P., Celebrano, M., Renn, A. & Sandoghdar, V. Imaging a single quantum dot when it is dark. Nano Lett. 9, 926–929 (2008).

  25. 25

    Schaefer, D. M., Reifenberger, R., Patil, A. & Andres, R. P. Fabrication of 2-dimensional arrays of nanometer-size clusters with the atomic-force microscope. Appl. Phys. Lett. 66, 1012–1014 (1995).

  26. 26

    Baur, C. et al. Nanoparticle manipulation by mechanical pushing: underlying phenomena and real-time monitoring. Nanotechnology 9, 360–364 (1998).

  27. 27

    Kim, S., Shafiei, F., Ratchford, D. & Li, X. Q. Controlled AFM manipulation of small nanoparticles and assembly of hybrid nanostructures. Nanotechnology 22, 115301 (2011).

  28. 28

    Junno, T., Deppert, K., Montelius, L. & Samuelson, L. Controlled manipulation of nanoparticles with an atomic-force microscope. Appl. Phys. Lett. 66, 3627–3629 (1995).

  29. 29

    Zhao, X., Boussaid, F., Bermak, A. & Chigrinov, V. G. High-resolution thin ‘guest–host’ micropolarizer arrays for visible imaging polarimetry. Opt. Express 19, 5565–5573 (2011).

  30. 30

    Fang, N., Lee, H., Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).

Download references

Acknowledgements

The work was supported in part by the US Army Research Laboratory and the US Army Research Office (W911NF-11-1-0447), the National Science Foundation (NSF; DMR-0747822), Office of Naval Research (N00014-08-1-0745), Air Force Office of Scientific Research (FA9550-10-1-0022), the Welch Foundation (F-1662) and the Alfred P. Sloan Foundation. The authors acknowledge technical assistance from S. Stranahan, K. Willets and J. Bao.

Author information

C.W. and G.S. proposed the concept. F.S. led the experimental effort. Y.W., P.P. and A.S. assisted in experiments. C.W. and A.B.K. conducted theoretical calculations. G.S. and X.L. supervised the project. All authors discussed and contributed to the paper.

Correspondence to Xiaoqin Li or Gennady Shvets.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1425 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shafiei, F., Wu, C., Wu, Y. et al. Plasmonic nano-protractor based on polarization spectro-tomography. Nature Photon 7, 367–372 (2013) doi:10.1038/nphoton.2013.68

Download citation

Further reading