Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Plasmonic nano-protractor based on polarization spectro-tomography


The detection of molecular and nanoparticle labels with nanometre spatial resolution is of great interest for biomolecular and material sciences1,2. Nanosensors capable of monitoring bending and rotations of biomolecules3,4 or characterizing soft materials assembled using DNA as scaffolds5,6 are highly desirable. A powerful idea incorporated in optical spectroscopic rulers is to transduce changes in spatial arrangement into spectral differences. With few exceptions7, current spectroscopic rulers such as fluorescent resonant energy transfer8 and the recently demonstrated plasmonic ruler9 provide merely one-dimensional information about the distance between labelling entities. Here, we propose and demonstrate a three-dimensional spectroscopic nanosensor, called a ‘plasmonic protractor’, based on a plasmonic nanostructure formed between a plasmonic sphere and a nanolabel attached to it. A polarization-resolved scattering technique enables the reconstruction of the nanolabel's location and orientation with deep subdiffraction spatial resolution. This plasmonic far-field, in situ spatial arrangement sensor greatly expands the capability of existing spectroscopic rulers.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Conceptual schematics of PST of the MNP/ESO hybrid.
Figure 2: Optical resonances and experimental assembly of an MNP/ESO hybrid.
Figure 3: Experimental application of PST to the nanosphere/nanorod hybrid.
Figure 4: The Fano axis defines the physical orientation of the rod.


  1. Sonnichsen, C. & Alivisatos, A. P. Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy. Nano Lett. 5, 301–304 (2005).

    Article  ADS  Google Scholar 

  2. Chang, W-S., Ha, J. W., Slaughter, L. S. & Link, S. Plasmonic nanorod absorbers as orientation sensors. Proc. Natl Acad. Sci. USA 107, 2781–2786 (2010).

    Article  ADS  Google Scholar 

  3. Yasuda, R., Noji, H., Yoshida, M., Kinosita, K. & Itoh, H. Resolution of distinct rotational substeps by submillisecond kinetic analysis of F-1-ATPase. Nature 410, 898–904 (2001).

    Article  ADS  Google Scholar 

  4. Bryant, Z. et al. Structural transitions and elasticity from torque measurements on DNA. Nature 424, 338–341 (2003).

    Article  ADS  Google Scholar 

  5. Sharma, J. et al. Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science 323, 112–116 (2009).

    Article  ADS  Google Scholar 

  6. Tan, S. J., Campolongo, M. J., Luo, D. & Cheng, W. L. Building plasmonic nanostructures with DNA. Nature Nanotech. 6, 268–276 (2011).

    Article  ADS  Google Scholar 

  7. Liu, N., Hentschel, M., Weiss, T., Alivisatos, A. P. & Giessen, H. Three-dimensional plasmon rulers. Science 332, 1407–1410 (2011).

    Article  ADS  Google Scholar 

  8. Stryer, L. Fluorescence energy-transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819–846 (1978).

    Article  Google Scholar 

  9. Sonnichsen, C., Reinhard, B. M., Liphardt, J. & Alivisatos, A. P. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nature Biotechnol. 23, 741–745 (2005).

    Article  Google Scholar 

  10. Verellen, N. et al. Fano resonances in individual coherent plasmonic nanocavities. Nano Lett. 9, 1663–1667 (2009).

    Article  ADS  Google Scholar 

  11. Luk'yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nature Mater. 9, 707–715 (2010).

    Article  ADS  Google Scholar 

  12. Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783–826 (1985).

    Article  ADS  Google Scholar 

  13. Xu, H., Bjerneld, E. J., Käll, M. & Börjesson, L. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 83, 4357–4360 (1999).

    Article  ADS  Google Scholar 

  14. Kühn, S., Håkanson, U., Rogobete, L. & Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006).

    Article  ADS  Google Scholar 

  15. Sokolov, K., Chumanov, G. & Cotton, T. M. Enhancement of molecular fluorescence near the surface of colloidal metal films. Anal. Chem. 70, 3898–3905 (1998).

    Article  Google Scholar 

  16. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nature Mater. 7, 442–453 (2008).

    Article  ADS  Google Scholar 

  17. Stewart, M. E. et al. Nanostructured plasmonic sensors. Chem. Rev. 108, 494–521 (2008).

    Article  Google Scholar 

  18. Klar, T. A. & Feldmann, J. in Complex-Shaped Metal Nanoparticles 395–427 (Wiley-VCH, 2012).

    Book  Google Scholar 

  19. Ha, T., Laurence, T. A., Chemla, D. S. & Weiss, S. Polarization spectroscopy of single fluorescent molecules. J. Phys. Chem. B 103, 6839–6850 (1999).

    Article  Google Scholar 

  20. Sick, B., Hecht, B. & Novotny, L. Orientational imaging of single molecules by annular illumination. Phys. Rev. Lett. 85, 4482–4485 (2000).

    Article  ADS  Google Scholar 

  21. Prummer, M., Sick, B., Hecht, B. & Wild, U. P. Three-dimensional optical polarization tomography of single molecules. J. Chem. Phys. 118, 9824–9829 (2003).

    Article  ADS  Google Scholar 

  22. Reinhard, B. M., Sheikholeslami, S., Mastroianni, A., Alivisatos, A. P. & Liphardt, J. Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes. Proc. Natl Acad. Sci. USA 104, 2667–2672 (2007).

    Article  ADS  Google Scholar 

  23. Liu, G. L. et al. A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting. Nature Nanotech. 1, 47–52 (2006).

    Article  ADS  Google Scholar 

  24. Kukura, P., Celebrano, M., Renn, A. & Sandoghdar, V. Imaging a single quantum dot when it is dark. Nano Lett. 9, 926–929 (2008).

    Article  ADS  Google Scholar 

  25. Schaefer, D. M., Reifenberger, R., Patil, A. & Andres, R. P. Fabrication of 2-dimensional arrays of nanometer-size clusters with the atomic-force microscope. Appl. Phys. Lett. 66, 1012–1014 (1995).

    Article  ADS  Google Scholar 

  26. Baur, C. et al. Nanoparticle manipulation by mechanical pushing: underlying phenomena and real-time monitoring. Nanotechnology 9, 360–364 (1998).

    Article  ADS  Google Scholar 

  27. Kim, S., Shafiei, F., Ratchford, D. & Li, X. Q. Controlled AFM manipulation of small nanoparticles and assembly of hybrid nanostructures. Nanotechnology 22, 115301 (2011).

    Article  ADS  Google Scholar 

  28. Junno, T., Deppert, K., Montelius, L. & Samuelson, L. Controlled manipulation of nanoparticles with an atomic-force microscope. Appl. Phys. Lett. 66, 3627–3629 (1995).

    Article  ADS  Google Scholar 

  29. Zhao, X., Boussaid, F., Bermak, A. & Chigrinov, V. G. High-resolution thin ‘guest–host’ micropolarizer arrays for visible imaging polarimetry. Opt. Express 19, 5565–5573 (2011).

    Article  ADS  Google Scholar 

  30. Fang, N., Lee, H., Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).

    Article  ADS  Google Scholar 

Download references


The work was supported in part by the US Army Research Laboratory and the US Army Research Office (W911NF-11-1-0447), the National Science Foundation (NSF; DMR-0747822), Office of Naval Research (N00014-08-1-0745), Air Force Office of Scientific Research (FA9550-10-1-0022), the Welch Foundation (F-1662) and the Alfred P. Sloan Foundation. The authors acknowledge technical assistance from S. Stranahan, K. Willets and J. Bao.

Author information

Authors and Affiliations



C.W. and G.S. proposed the concept. F.S. led the experimental effort. Y.W., P.P. and A.S. assisted in experiments. C.W. and A.B.K. conducted theoretical calculations. G.S. and X.L. supervised the project. All authors discussed and contributed to the paper.

Corresponding authors

Correspondence to Xiaoqin Li or Gennady Shvets.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1425 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shafiei, F., Wu, C., Wu, Y. et al. Plasmonic nano-protractor based on polarization spectro-tomography. Nature Photon 7, 367–372 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing