Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Analysis of enhanced light emission from highly strained germanium microbridges

Abstract

Tensile strain is a widely discussed means for inducing a direct bandgap in Ge for the realization of a semiconductor laser compatible with Si microelectronics. We present a top-down fabrication approach for creating high uniaxial tensile stress in suspended Ge structures, which enhances—by a factor of more than 20—the strain induced by thermal mismatch of Ge layers grown on silicon or silicon-on-insulator substrates. Strain values up to 3.1% are measured using Raman spectroscopy, in excellent agreement with simulations using a biaxial thermal strain of 0.15%. As expected from the high value of strain, a 210 meV peak energy shift in the emission with respect to bulk Ge and a strong increase (×25) in the integrated photoluminescence intensity are observed. Although 3.1% uniaxial strain does not transform Ge into a direct-gap material, our model calculation predicts an optical gain of 460 cm−1 for 1 × 1019 cm−3 n-doped structures at an electron–hole injection density of 3 × 1019 cm−3.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of prestrained Ge layers and fabrication of suspended constricted structures.
Figure 2: Raman spectroscopy and FEM investigation of the strain distribution in the suspended constricted Ge structures.
Figure 3: Raman spectra and EFs collected on structures with different dimensions.
Figure 4: µPL spectra measured at room temperature for different suspended constricted Ge structures and excitation positions.
Figure 5: Gain simulation for 3.1% strained Ge structures, doped and undoped.

Similar content being viewed by others

References

  1. Havemann, R. H. & Hutchby, J. A. High-performance interconnects: an integration overview. Proc. IEEE 89, 586–601 (2001).

    Article  Google Scholar 

  2. Deleonibus, S. Electronic Device Architectures for the Nano-CMOS Era 524–559 (Pan Stanford, 2004).

    Google Scholar 

  3. Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nature Photon. 4, 518–526 (2010).

    Article  ADS  Google Scholar 

  4. Michel, J., Liu, J. & Kimerling, L. C. High-performance Ge-on-Si photodetectors. Nature Photon. 4, 527–534 (2010).

    Article  ADS  Google Scholar 

  5. Leuthold, J., Koos, C. & Freude, W. Nonlinear silicon photonics. Nature Photon. 4, 535–544 (2010).

    Article  ADS  Google Scholar 

  6. Roelkens, G. et al. IIIV/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photon. Rev. 4, 751–779 (2010).

    Article  ADS  Google Scholar 

  7. Fang, A. W. et al. Electrically pumped hybrid AlGaInAs–silicon evanescent laser. Opt. Express 14, 9203–9210 (2006).

    Article  ADS  Google Scholar 

  8. Liu, J. et al. Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si. Opt. Express 15, 11272–11277 (2007).

    Article  ADS  Google Scholar 

  9. Lee, M. L., Fitzgerald, E. A., Bulsara, M. T., Currie, M. T. & Lochtefeld, A. Strained Si, SiGe, and Ge channels for high-mobility metal–oxide–semiconductor field-effect transistors. J. Appl. Phys. 97, 011101 (2005).

    Article  ADS  Google Scholar 

  10. Zhang, F., Crespi, V. H. & Zhang, P. Prediction that uniaxial tension along 111 produces a direct band gap in germanium. Phys. Rev. Lett. 102, 156401 (2009).

    Article  ADS  Google Scholar 

  11. Vogl, P., Rieger, M. M., Majewski, J. A. & Abstreiter, G. How to convert group-IV semiconductors into light emitters. Phys. Scr. T49, 476–482 (1993).

    Article  ADS  Google Scholar 

  12. Niquet, Y. M., Rideau, D., Tavernier, C., Jaouen, H. & Blase, X. Onsite matrix elements of the tight-binding Hamiltonian of a strained crystal: application to silicon, germanium, and their alloys. Phys. Rev. B 79, 245201 (2009).

    Article  ADS  Google Scholar 

  13. Aldaghri, O., Ikonic, Z. & Kelsall, R. W. Optimum strain configurations for carrier injection in near infrared Ge lasers. J. Appl. Phys. 111, 053106 (2012).

    Article  ADS  Google Scholar 

  14. Liu, J., Sun, X., Camacho-Aguilera, R., Kimerling, L. C. & Michel, J. Ge-on-Si laser operating at room temperature. Opt. Lett. 35, 679–681 (2010).

    Article  ADS  Google Scholar 

  15. Camacho-Aguilera, R. E. et al. An electrically pumped germanium laser. Opt. Express 20, 11316–11320 (2012).

    Article  ADS  Google Scholar 

  16. Sanchez-Perez, J. R. et al. Direct-bandgap light-emitting germanium in tensilely strained nanomembranes. Proc. Natl Acad. Sci. USA 108, 18893–18898 (2011).

    Article  ADS  Google Scholar 

  17. Ghrib, A. et al. Control of tensile strain in germanium waveguides through silicon nitride layers. Appl. Phys. Lett. 100, 201104 (2012).

    Article  ADS  Google Scholar 

  18. Jain, J. R. et al. A micromachining-based technology for enhancing germanium light emission via tensile strain. Nature Photon. 6, 398–405 (2012).

    Article  ADS  Google Scholar 

  19. Ruoff, A. L. On the ultimate yield strength of solids. J. Appl. Phys. 49, 197–200 (1978).

    Article  ADS  Google Scholar 

  20. Minamisawa, R. A. et al. Top-down fabricated silicon nanowires under tensile elastic strain up to 4.5%. Nature Commun. 3, 1096 (2012).

    Article  ADS  Google Scholar 

  21. Anastassakis, E., Pinczuk, A., Burstein, E., Pollak, F. H. & Cardona, M. Effect of static uniaxial stress on the Raman spectrum of silicon. Solid State Commun. 8, 133–138 (1970).

    Article  ADS  Google Scholar 

  22. Pezzoli, F. et al. Strain-induced shift of phonon modes in Si1–xGex alloys. Mater. Sci. Semicond. Proc. 9, 541–545 (2006).

    Article  Google Scholar 

  23. Tahini, H., Chroneos, A., Grimes, R. W., Schwingenschlögl, U. & Dimoulas, A. Strain-induced changes to the electronic structure of germanium. J. Phys. Condens. Matter 24, 195802 (2012).

    Article  ADS  Google Scholar 

  24. Birner, S. et al. Nextnano: general purpose 3-D simulations. IEEE Trans. Electron. Dev. 54, 2137–2142 (2007).

    Article  ADS  Google Scholar 

  25. Carroll, L. et al. Direct-gap gain and optical absorption in germanium correlated to the density of photoexcited carriers, doping, and strain. Phys. Rev. Lett. 109, 057402 (2012).

    Article  ADS  Google Scholar 

  26. Isella, G. et al. Low-energy plasma-enhanced chemical vapor deposition for strained Si and Ge heterostructures and devices. Solid State Electron. 48, 1317–1323 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge hospitality from the IR beamline of the SLS, where some of the photoluminescence experiments were performed. Part of this work is supported by the Swiss National Science Foundation (SNF project no. 130181). The authors also acknowledge support from the CARIPLO foundation regarding the project NANOGAP.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this Article. M.J.S. performed Raman measurements and carried out finite element simulations. R.G. and R.A.M. fabricated the Ge/SOI samples, and G.S. fabricated the Ge/Si samples. R.G. performed the optical measurements. R.G. and J.F. performed the gain simulation. J.Fr., D.C. and G.I. performed the sample growth and XRD analysis. H.S., R.S. and J.F. collaborated on the design of the experiment. M.J.S., R.G., R.A.M. and H.S. wrote the draft manuscript. H.S. supervised the experiments and coordinated data interpretation.

Corresponding author

Correspondence to H. Sigg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3990 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Süess, M., Geiger, R., Minamisawa, R. et al. Analysis of enhanced light emission from highly strained germanium microbridges. Nature Photon 7, 466–472 (2013). https://doi.org/10.1038/nphoton.2013.67

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.67

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing