Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Experimental demonstration of long-distance continuous-variable quantum key distribution

Abstract

Distributing secret keys with information-theoretic security is arguably one of the most important achievements of the field of quantum information processing and communications1. The rapid progress in this field has enabled quantum key distribution in real-world conditions2,3 and commercial devices are now readily available. Quantum key distribution systems based on continuous variables4 provide the major advantage that they only require standard telecommunication technology. However, to date, these systems have been considered unsuitable for long-distance communication5,6,7. Here, we overcome all previous limitations and demonstrate for the first time continuous-variable quantum key distribution over 80 km of optical fibre. All aspects of a practical scenario are considered, including the use of finite-size data blocks for secret information computation and key distillation. Our results correspond to an implementation guaranteeing the strongest level of security for quantum key distribution reported so far for such long distances and pave the way to practical applications of secure quantum communications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical layout of the long-distance CVQKD prototype.
Figure 2: Key rate produced by the system after error correction and privacy amplification over 24 h.
Figure 3: Experimental excess noise measured over 24 h with a SNR of 0.17 on Bob's side.

Similar content being viewed by others

References

  1. Scarani, V. et al. The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009).

    Article  ADS  Google Scholar 

  2. Peev, M. et al. The SECOQC quantum key distribution in Vienna. New J. Phys. 11, 075001 (2009).

    Article  ADS  Google Scholar 

  3. Sasaki, M. et al. Field test of quantum key distribution in the Tokyo QKD network. Opt. Express 19, 10387–10409 (2011).

    Article  ADS  Google Scholar 

  4. Weedbrook, C. et al. Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012).

    Article  ADS  Google Scholar 

  5. Fossier, S. et al. Field test of a continuous-variable quantum key distribution prototype. New J. Phys. 11, 045023 (2009).

    Article  ADS  Google Scholar 

  6. Dinh Xuan, Q., Zhang, Z. & Voss, P. A 24 km fiber-based discretely signaled continuous variable quantum key distribution system. Opt. Express 17, 24244–24249 (2009).

    Article  ADS  Google Scholar 

  7. Jouguet, P. et al. Field test of classical symmetric encryption with continuous variables quantum key distribution. Opt. Express 20, 14030–14041 (2012).

    Article  ADS  Google Scholar 

  8. Briegel, H-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article  ADS  Google Scholar 

  9. Takesue, H. et al. Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors. Nature Photon. 1, 343–348 (2007).

    Article  ADS  Google Scholar 

  10. Rosenberg, D. et al. Practical long-distance quantum key distribution system using decoy levels. New J. Phys. 11, 045009 (2009).

    Article  ADS  Google Scholar 

  11. Stucki, D. et al. High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres. New J. Phys. 11, 075003 (2009).

    Article  ADS  Google Scholar 

  12. Dixon, A. R., Yuan, Z. L., Dynes, J. F., Sharpe, A. W. & Shields, A. J. Continuous operation of high bit rate quantum key distribution. Appl. Phys. Lett. 96, 161102 (2010).

    Article  ADS  Google Scholar 

  13. Grosshans, F. et al. Quantum key distribution using Gaussian-modulated coherent states. Nature 421, 238–241 (2003).

    Article  ADS  Google Scholar 

  14. Qi, B., Huang, L-L., Qian, L. & Lo, H-K. Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers. Phys. Rev. A 76, 052323 (2007).

    Article  ADS  Google Scholar 

  15. Lodewyck, J. et al. Quantum key distribution over 25 km with an all-fiber continuous-variable system. Phys. Rev. A 76, 042305 (2007).

    Article  ADS  Google Scholar 

  16. Symul, T. et al. Experimental demonstration of post-selection-based continuous-variable quantum key distribution in the presence of Gaussian noise. Phys. Rev. A 76, 030303 (2007).

    Article  ADS  Google Scholar 

  17. Shen, Y., Zou, H., Tian, L., Chen, P. & Yuan, J. Experimental study on discretely modulated continuous-variable quantum key distribution. Phys. Rev. A 82, 022317 (2010).

    Article  ADS  Google Scholar 

  18. Scarani, V. & Renner, R. Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing. Phys. Rev. Lett. 100, 200501 (2008).

    Article  ADS  Google Scholar 

  19. Jouguet, P., Kunz-Jacques, S., Diamanti, E. & Leverrier, A. Analysis of imperfections in practical continuous-variable quantum key distribution. Phys. Rev. A 86, 032309 (2012).

    Article  ADS  Google Scholar 

  20. Grosshans, F. & Grangier, P. Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88, 057902 (2002).

    Article  ADS  Google Scholar 

  21. García-Patrón, R. & Cerf, N. J. Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. Phys. Rev. Lett. 97, 190503 (2006).

    Article  ADS  Google Scholar 

  22. Navascués, M., Grosshans, F. & Acín, A. Optimality of Gaussian attacks in continuous-variable quantum cryptography. Phys. Rev. Lett. 97, 190502 (2006).

    Article  ADS  Google Scholar 

  23. Renner, R. & Cirac, J. I. De Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography. Phys. Rev. Lett. 102, 110504 (2009).

    Article  ADS  Google Scholar 

  24. Leverrier, A., García-Patrón, R., Renner, R. & Cerf, N. J. Security of continuous-variable quantum key distribution against general attacks. Phys. Rev. Lett. 110, 030502 (2013).

    Article  ADS  Google Scholar 

  25. Leverrier, A., Alléaume, R., Boutros, J., Zémor, G. & Grangier, P. Multidimensional reconciliation for a continuous-variable quantum key distribution. Phys. Rev. A 77, 042325 (2008).

    Article  ADS  Google Scholar 

  26. Jouguet, P., Kunz-Jacques, S. & Leverrier, A. Long-distance continuous-variable quantum key distribution with a Gaussian modulation. Phys. Rev. A 84, 062317 (2011).

    Article  ADS  Google Scholar 

  27. Blandino, R. et al. Improving the maximum transmission distance of continuous-variable quantum key distribution using a noiseless amplifier. Phys. Rev. A 86, 012327 (2012).

    Article  ADS  Google Scholar 

  28. Fiurasek, J. & Cerf, N. J. Gaussian postselection and virtual noiseless amplification in continuous-variable quantum key distribution. Phys. Rev. A 86, 060302(R) (2012).

    Article  ADS  Google Scholar 

  29. Walk, N., Symul, T., Lam, P-K. & Ralph, T. C. Security of continuous-variable quantum cryptography with Gaussian postselection. Phys. Rev. A 87, 020303(R) (2013).

    Article  ADS  Google Scholar 

  30. Furrer, F. et al. Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks. Phys. Rev. Lett. 109, 100502 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the French National Research Agency, through the FREQUENCY (Fundamental Research in Quantum Networks and Cryptography, ANR-09-BLAN-0410) and HIPERCOM (High Performance Coherent Quantum Communications, 2011-CHRI-006) projects, and by the European Union through the project Q-CERT (Quantum Key Distribution Certification, FP7-PEOPLE-2009-IAPP). P.J. acknowledges support from the ANRT (Agence Nationale de la Recherche et de la Technologie). A.L. was supported by the SNF through the National Centre of Competence in Research ‘Quantum Science and Technology.’

Author information

Authors and Affiliations

Authors

Contributions

P.J., S.K.-J. and E.D. conceived the project and developed the experimental setup. P.J. and S.K.-J. collected and analysed the data. A.L. performed the security analysis. P.G. contributed to the initial conception of the project and provided scientific expertise. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Paul Jouguet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 492 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jouguet, P., Kunz-Jacques, S., Leverrier, A. et al. Experimental demonstration of long-distance continuous-variable quantum key distribution. Nature Photon 7, 378–381 (2013). https://doi.org/10.1038/nphoton.2013.63

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.63

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing