Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Damping pathways of mid-infrared plasmons in graphene nanostructures

Abstract

Plasmon is the quantum of the collective oscillation of electrons. How plasmon loses its energy (or damping) plays a pivotal role in plasmonic science and technology. Graphene plasmon is of particular interest, partly because of its potentially low damping rate. However, to date, damping pathways have not been clearly unravelled experimentally. Here, we demonstrate mid-infrared (4–15 µm) plasmons in graphene nanostructures with dimensions as small as 50 nm (with a mode area of 1 × 10−3 µm2). We also reveal damping channels via graphene intrinsic optical phonons and scattering from the edges. Plasmon lifetimes of 20 fs or less are observed when damping via the emission of graphene optical phonons is allowed. Furthermore, surface polar phonons in the SiO2 substrate under graphene nanostructures lead to a significantly modified plasmon dispersion and damping, in contrast to the case of a nonpolar diamond-like-carbon substrate. Our study paves the way for applications of graphene in plasmonic waveguides, modulators and detectors from sub-terahertz to mid-infrared regimes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics of the experiment.
Figure 2: Plasmons in graphene nanoribbons on DLC.
Figure 3: Plasmons in graphene nanoribbons on SiO2.
Figure 4: Origins of plasmon damping.

Similar content being viewed by others

References

  1. Maier, S. Plasmonics: Fundamentals and Applications 1st edn (Springer, 2007).

    Book  Google Scholar 

  2. Koppens, F. H. L., Chang, D. E. & Garcia de Abajo, F. J. Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett. 11, 3370–3377 (2011).

    Article  ADS  Google Scholar 

  3. Vakil, A. & Engheta, N. Transformation optics using graphene. Science 332, 1291–1294 (2011).

    Article  ADS  Google Scholar 

  4. Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotech. 6, 630–634 (2011).

    Article  ADS  Google Scholar 

  5. Fei, Z. et al. Infrared nanoscopy of Dirac plasmons at the graphene/SiO2 interface. Nano Lett. 11, 4701–4705 (2011).

    Article  ADS  Google Scholar 

  6. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    Article  ADS  Google Scholar 

  7. Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    Article  ADS  Google Scholar 

  8. Yan, H. et al. Tunable infrared plasmonic devices using graphene/insulator stacks. Nature Nanotech. 7, 330–334 (2012).

    Article  ADS  Google Scholar 

  9. Yan, H. et al. Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene. Nano Lett. 12, 3766–3771 (2012).

    Article  ADS  Google Scholar 

  10. Han, M. Y., Ozyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

    Article  ADS  Google Scholar 

  11. Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006).

    Article  ADS  Google Scholar 

  12. Todd, K., Chou, H. T., Amasha, S. & Goldhaber-Gordon, D. Quantum dot behavior in graphene nanoconstrictions. Nano Lett. 9, 416–421 (2008).

    Article  ADS  Google Scholar 

  13. Kreibig, U. & Vollmer, M. Optical Properties of Metal Clusters 1st edn (Springer, 1995).

    Book  Google Scholar 

  14. Link, S. & El-Sayed, M. A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 103, 4212–4217 (1999).

    Article  Google Scholar 

  15. Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    Article  ADS  Google Scholar 

  16. Wu, Y. et al. High-frequency, scaled graphene transistors on diamond-like carbon. Nature 472, 74–78 (2011).

    Article  ADS  Google Scholar 

  17. Kucírková, A. & Navrátil, K. Interpretation of infrared transmittance spectra of SiO2 thin films. Appl. Spectrosc. 48, 113–120 (1994).

    Article  ADS  Google Scholar 

  18. Yan, H. et al. Infrared spectroscopy of wafer-scale graphene. ACS Nano 5, 9854–9860 (2011).

    Article  Google Scholar 

  19. Fuchs, R. & Kliewer, K. L. Optical modes of vibration in an ionic crystal slab. Phys. Rev. 140, A2076–A2088 (1965).

    Article  ADS  Google Scholar 

  20. Dubois, L. H. & Schwartz, G. P. Surface optical phonons and hydrogen chemisorption on polar and nonpolar faces of GaAs, InP, and GaP. Phys. Rev. B 26, 794–802 (1982).

    Article  ADS  Google Scholar 

  21. Matz, R. & Luth, H. Conduction-band surface plasmons in the electron-energy-loss spectrum of GaAs(110). Phys. Rev. Lett. 46, 500–503 (1981).

    Article  ADS  Google Scholar 

  22. Wang, S. Q. & Mahan, G. D. Electron scattering from surface excitations. Phys. Rev. B 6, 4517–4524 (1972).

    Article  ADS  Google Scholar 

  23. Fratini, S. & Guinea, F. Substrate-limited electron dynamics in graphene. Phys. Rev. B 77, 195415 (2008).

    Article  ADS  Google Scholar 

  24. Hwang, E. H., Sensarma, R. & Das Sarma, S. Plasmon–phonon coupling in graphene. Phys. Rev. B 82, 195406 (2010).

    Article  ADS  Google Scholar 

  25. Liu, Y. & Willis, R. F. Plasmon–phonon strongly coupled mode in epitaxial graphene. Phys. Rev. B 81, 081406 (2010).

    Article  ADS  Google Scholar 

  26. Stern, F. Polarizability of a two-dimensional electron gas. Phys. Rev. Lett. 18, 546–548 (1967).

    Article  ADS  Google Scholar 

  27. Wunsch, B., Stauber, T. & Guinea, F. Dynamical polarization of graphene at finite doping. New J. Phys. 8, 318 (2006).

    Article  ADS  Google Scholar 

  28. Hwang, E. H. & Das Sarma, S. Dielectric function, screening, and plasmons in two-dimensional graphene. Phys. Rev. B 75, 205418 (2007).

    Article  ADS  Google Scholar 

  29. Mikhailov, S. A. & Savostianova, N. A. Microwave response of a two-dimensional electron stripe. Phys. Rev. B 71, 035320 (2005).

    Article  ADS  Google Scholar 

  30. Nikitin, A. Yu, Guinea, F., Garcia-Vidal, F. J. & Martin-Moreno, L. Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons. Phys. Rev. B 85, 081405 (2012).

    Article  ADS  Google Scholar 

  31. Thongrattanasiri, S., Manjavacas, A. & Garcia de Abajo, F. J. Quantum finite-size effects in graphene plasmons. ACS Nano 6, 1766–1775 (2012).

    Article  Google Scholar 

  32. Radovic, L. R. & Bockrath, B. On the chemical nature of graphene edges: origin of stability and potential for magnetism in carbon materials. J. Am. Chem. Soc. 127, 5917–5927 (2005).

    Article  Google Scholar 

  33. Areshkin, D. A., Gunlycke, D. & White, C. T. Ballistic transport in graphene nanostrips in the presence of disorder: importance of edge effects. Nano Lett. 7, 204–210 (2006).

    Article  ADS  Google Scholar 

  34. Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961).

    Article  ADS  Google Scholar 

  35. Jablan, M., Soljacic, M. & Buljan, H. Unconventional plasmon–phonon coupling in graphene. Phys. Rev. B 83, 161409 (2011).

    Article  ADS  Google Scholar 

  36. Mahan, G. D. Many-Particle Physics 3rd edn (Kluwer Academic/Plenum, 2000).

    Book  Google Scholar 

  37. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  ADS  Google Scholar 

  38. Hillenbrand, R., Taubner, T. & Keilmann, F. Phonon-enhanced light–matter interaction at the nanometre scale. Nature 418, 159–162 (2002).

    Article  ADS  Google Scholar 

  39. Perebeinos, V. & Avouris, Ph. Inelastic scattering and current saturation in graphene. Phys. Rev. B 81, 195442 (2010).

    Article  ADS  Google Scholar 

  40. Fischetti, M. V., Neumayer, D. A. & Cartier, E. A. Effective electron mobility in Si inversion layers in metal–oxide–semiconductor systems with a high-κ insulator: the role of remote phonon scattering. J. Appl. Phys. 90, 4587–4608 (2001).

    Article  ADS  Google Scholar 

  41. Adato, R. et al. Radiative engineering of plasmon lifetimes in embedded nanoantenna arrays. Opt. Express 18, 4526–4537 (2010).

    Article  ADS  Google Scholar 

  42. Jablan, M., Buljan, H. & Soljacic, M. Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009).

    Article  ADS  Google Scholar 

  43. Langer, T. et al. Plasmon damping below the Landau regime: the role of defects in epitaxial graphene. New J. Phys. 12, 033017 (2010).

    Article  ADS  Google Scholar 

  44. Park, C-H., Giustino, F., Cohen, M. L. & Louie, S. G. Velocity renormalization and carrier lifetime in graphene from the electron–phonon interaction. Phys. Rev. Lett. 99, 086804 (2007).

    Article  ADS  Google Scholar 

  45. Low, T. et al. Cooling of photoexcited carriers in graphene by internal and substrate phonons. Phys. Rev. B 86, 045413 (2012).

    Article  ADS  Google Scholar 

  46. Ong, Z. & Fischetti, M. V. Theory of interfacial plasmon–phonon scattering in supported graphene. Phys. Rev. B 86, 165422 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank B. Ek, J. Bucchignano and S. (Jay) Chey for technical assistance, and V. Perebeinos and Z. Li of the National High Magnetic Field Laboratory and T.F. Heinz of Columbia University for discussions. F.X. thanks C. Gmachl of Princeton University and Y. Yao of Harvard University for help in the planning stage of the project. T.L. and F.G. acknowledge the hospitality of KITP, supported in part by the National Science Foundation (grant no. NSF PHY11-25915). T.L. also acknowledges partial support from NRI-INDEX, and F.G. is also supported by the Spanish MICINN (FIS2008-00124, CONSOLIDER CSD2007-00010) and ERC grant 290846. 

Author information

Authors and Affiliations

Authors

Contributions

F.X. and H.Y. initiated the project and conceived the experiments. W.Z., Y.W., H.Y. and F.X. fabricated the devices. H.Y. performed the measurements and data analysis. T.L. and F.G. provided modelling and the theoretical foundation. M.F. participated in setting up the experimental apparatus. X.L. grew the CVD graphene. H.Y. and T.L. co-wrote the manuscript with input from F.X., and P.A. provided suggestions throughout the project. All authors commented on the manuscript.

Corresponding authors

Correspondence to Hugen Yan, Phaedon Avouris or Fengnian Xia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 813 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, H., Low, T., Zhu, W. et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nature Photon 7, 394–399 (2013). https://doi.org/10.1038/nphoton.2013.57

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.57

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing