Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spectral compression of single photons

Abstract

Photons are critical to quantum technologies because they can be used for virtually all quantum information tasks, for example, in quantum metrology1, as the information carrier in photonic quantum computation2,3, as a mediator in hybrid systems4, and to establish long-distance networks5. The physical characteristics of photons in these applications differ drastically; spectral bandwidths span 12 orders of magnitude from 50 THz (ref. 6) for quantum-optical coherence tomography7 to 50 Hz for certain quantum memories8. Combining these technologies requires coherent interfaces that reversibly map centre frequencies and bandwidths of photons to avoid excessive loss. Here, we demonstrate bandwidth compression of single photons by a factor of 40 as well as tunability over a range 70 times that bandwidth via sum-frequency generation with chirped laser pulses. This constitutes a time-to-frequency interface for light capable of converting time-bin to colour entanglement9, and enables ultrafast timing measurements. It is a step towards arbitrary waveform generation10 for single and entangled photons.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Single-photon bandwidth compression scheme.
Figure 2: Single-photon spectra versus wavelength (top) and relative frequency (bottom).
Figure 3: Wavelength tunability.
Figure 4: Temporal correlations with the idler photon.

References

  1. Higgins, B. L., Berry, D. W., Bartlett, S. D., Wiseman, H. M. & Pryde, G. J. Entanglement-free Heisenberg-limited phase estimation. Nature 450, 393–396 (2007).

    ADS  Article  Google Scholar 

  2. Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

    ADS  Article  Google Scholar 

  3. Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nature Phys. 8, 285–291 (2012).

    ADS  Article  Google Scholar 

  4. Wallquist, M., Hammerer, K., Rabl, P., Lukin, M. & Zoller, P. Hybrid quantum devices and quantum engineering. Phys. Scr. 2009, 014001 (2009).

    Article  Google Scholar 

  5. Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    ADS  Article  Google Scholar 

  6. Nasr, M. B. et al. Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion. Phys. Rev. Lett. 100, 183601 (2008).

    ADS  Article  Google Scholar 

  7. Abouraddy, A. F., Nasr, M. B., Saleh, B. E. A., Sergienko, A. V. & Teich, M. C. Quantum-optical coherence tomography with dispersion cancellation. Phys. Rev. A 65, 053817 (2002).

    ADS  Article  Google Scholar 

  8. Tittel, W. et al. Photon-echo quantum memory in solid state systems. Laser Photon. Rev. 4, 244–267 (2010).

    ADS  Article  Google Scholar 

  9. Ramelow, S., Ratschbacher, L., Fedrizzi, A., Langford, N. K. & Zeilinger, A. Discrete tunable color entanglement. Phys. Rev. Lett. 103, 253601 (2009).

    ADS  Article  Google Scholar 

  10. Kielpinski, D., Corney, J. F. & Wiseman, H. M. Quantum optical waveform conversion. Phys. Rev. Lett. 106, 130501 (2011).

    ADS  Article  Google Scholar 

  11. Eisaman, M. D., Fan, J., Migdall, A. & Polyakov, S. V. Invited review article: single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101 (2011).

    ADS  Article  Google Scholar 

  12. Hosseini, M., Sparkes, B. M., Campbell, G., Lam, P. K. & Buchler, B. C. High efficiency coherent optical memory with warm rubidium vapour. Nature Commun. 2, 174 (2011).

    ADS  Article  Google Scholar 

  13. Huang, J. & Kumar, P. Observation of quantum frequency conversion. Phys. Rev. Lett. 68, 2153–2156 (1992).

    ADS  Article  Google Scholar 

  14. Vandevender, A. P. & Kwiat, P. G. High efficiency single photon detection via frequency up-conversion. J. Mod. Opt. 51, 1433–1445 (2004).

    ADS  Article  Google Scholar 

  15. Tanzilli, S. et al. A photonic quantum information interface. Nature 437, 116–120 (2005).

    ADS  Article  Google Scholar 

  16. Langrock, C. et al. Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides. Opt. Lett. 30, 1725–1727 (2005).

    ADS  Article  Google Scholar 

  17. Ramelow, S., Fedrizzi, A., Poppe, A., Langford, N. K. & Zeilinger, A. Polarization-entanglement-conserving frequency conversion of photons. Phys. Rev. A 85, 013845 (2012).

    ADS  Article  Google Scholar 

  18. Rakher, M. T. et al. Simultaneous wavelength translation and amplitude modulation of single photons from a quantum dot. Phys. Rev. Lett. 107, 083602 (2011).

    ADS  Article  Google Scholar 

  19. McGuinness, H. J., Raymer, M. G., McKinstrie, C. J. & Radic, S. Quantum frequency translation of single-photon states in a photonic crystal fiber. Phys. Rev. Lett. 105, 093604 (2010).

    ADS  Article  Google Scholar 

  20. Dudin, Y. O. et al. Entanglement of light-shift compensated atomic spin waves with telecom light. Phys. Rev. Lett. 105, 260502 (2010).

    ADS  Article  Google Scholar 

  21. Pelc, J. S. et al. Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis. Opt. Express 19, 21445–21456 (2011).

    ADS  Article  Google Scholar 

  22. Lvovsky, A. I., Sanders, B. C. & Tittel, W. Optical quantum memory. Nature Photon. 3, 706–714 (2009).

    ADS  Article  Google Scholar 

  23. Liu, C., Dutton, Z., Behroozi, C. H. & Vestergaard Hau, L. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001).

    ADS  Article  Google Scholar 

  24. Boyd, R. W. Nonlinear Optics 3rd edn (Academic Press, 2008).

    Google Scholar 

  25. Raoult, F. et al. Efficient generation of narrow-bandwidth picosecond pulses by frequency doubling of femtosecond chirped pulses. Opt. Lett. 23, 1117–1119 (1998).

    ADS  Article  Google Scholar 

  26. Osvay, K. & Ross, I. N. Efficient tuneable bandwidth frequency mixing using chirped pulses. Opt. Commun. 166, 113–119 (1999).

    ADS  Article  Google Scholar 

  27. Veitas, G. & Danielius, R. Generation of narrow-bandwidth tunable picosecond pulses by difference-frequency mixing of stretched pulses. J. Opt. Soc. Am. B 16, 1561–1565 (1999).

    ADS  Article  Google Scholar 

  28. Simon, C. et al. Quantum memories. Eur. Phys. J. D 58, 1–22 (2010).

    ADS  Article  Google Scholar 

  29. Reim, K. F. et al. Towards high-speed optical quantum memories. Nature Photon. 4, 218–221 (2010).

    ADS  Article  Google Scholar 

  30. Eckstein, A., Brecht, B. & Silberhorn, C. A quantum pulse gate based on spectrally engineered sum frequency generation. Opt. Express 19, 13770–13778 (2011).

    ADS  Article  Google Scholar 

  31. Baek, S.-Y., Cho, Y.-W. & Kim, Y.-H. Nonlocal dispersion cancellation using entangled photons. Opt. Express 17, 19241–19252 (2009).

    ADS  Article  Google Scholar 

  32. Treacy, E. Optical pulse compression with diffraction gratings. IEEE J. Quantum Electron. 5, 454–458 (1969).

    ADS  Article  Google Scholar 

  33. Diels, J.-C. & Rudolph, W. Ultrashort Laser Pulse Phenomena 2nd edn (Academic Press, 2006).

    Google Scholar 

Download references

Acknowledgements

The authors thank A. Branczyk, D. Hamel, A. Kallin, R. Melko, M. Piani, R. Prevedel, S. Ramelow, K. Shalm and J. Watrous for helpful discussions. The authors acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC), the Ontario Centres of Excellence (OCE), the Canada Foundation for Innovation (CFI), QuantumWorks, the Ontario Graduate Scholarship Program (OGS) and the Ontario Ministry of Research and Innovation Early Researcher Award.

Author information

Authors and Affiliations

Authors

Contributions

A.F. and K.J.R. conceived the idea for the study. K.J.R., A.F. and J.L. designed the experiment. J.L. performed the experiments and analysed the data. J.M.D. and L.G.W. contributed to building the experimental setup and in taking data. All authors contributed to writing the manuscript. A.F. is supported by an ARC Discovery Early Career Researcher Award DE130100240.

Corresponding authors

Correspondence to J. Lavoie or K. J. Resch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 821 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lavoie, J., Donohue, J., Wright, L. et al. Spectral compression of single photons. Nature Photon 7, 363–366 (2013). https://doi.org/10.1038/nphoton.2013.47

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.47

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing