Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Air-to-ground quantum communication


Quantum key distribution1,2 (QKD) is the first commercial application in the new field of quantum information, with first routine applications in government and financial sectors3 and with successful demonstrations of trusted node networks4,5. Today, the main goal is efficient long-range key distribution via either quantum repeaters6 or satellites7,8,9, with a view to enabling global secure communication. En route to achieving QKD via satellites, a free-space demonstration of secure key distribution was performed between two ground stations10, over a distance of 144 km. This scenario is comparable to links between satellites in low Earth orbit and ground stations with respect to both attenuation and fluctuations. However, key exchange with rapidly moving platforms remained to be demonstrated. Here, we prove, for the first time, the feasibility of BB84 QKD between an aeroplane and a ground station. By establishing a stable and low-noise quantum communication channel with the aeroplane moving at 290 km h−1 at a distance of 20 km—that is, 4 mrad s−1—our results are representative of typical communication links to satellites11 or to high-altitude platforms.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the classical communication system of the German Aerospace Center's Institute of Communications and Navigation.
Figure 2: QKD and classical communication hardware.
Figure 3: Count rates registered during one aircraft passage (duration 10 min and 4 s).


  1. Bennett, C. H. & Brassard, G. Quantum cryptography: public-key distribution and coin tossing. in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing 175–179 (Bangalore, 1984).

  2. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    Article  ADS  Google Scholar 

  3. ID Quantique SA; available at

  4. Peev, M. et al. The SECOQC quantum key distribution network in Vienna. New J. Phys. 11, 075001 (2009).

    Article  ADS  Google Scholar 

  5. Sasaki, M. et al. Field test of quantum key distribution in the Tokyo QKD network. Opt. Express 19, 10387–10409 (2011).

    Article  ADS  Google Scholar 

  6. Briegel, H-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article  ADS  Google Scholar 

  7. Nordholt, J., Hughes, R., Morgan, G., Peterson, C. & Wipf, C. Present and future free-space quantum key distribution. Proc. SPIE 4635, 116–126 (2002).

    Article  ADS  Google Scholar 

  8. Hughes, R. J., Nordholt, J. E., McCabe, K. P., Newell, R. T. & Peterson, C. G. in Proceedings of Updating Quantum Cryptography and Communications 2010 71–72 (Tokyo, 2010).

  9. Perdigues Armengol, J. et al. Quantum communications at ESA: towards a space experiment on the ISS. Acta Astronaut. 63, 165–178 (2008).

    Article  ADS  Google Scholar 

  10. Schmitt-Manderbach, T. et al. Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98, 010504 (2007).

    Article  ADS  Google Scholar 

  11. Perlot, N. et al. Results of the optical downlink experiment KIODO from OICETS satellite to optical ground station Oberpfaffenhofen (OGS-OP). Proc. SPIE, 6457, 645704 (2007).

    Article  Google Scholar 

  12. Scarani, V. et al. The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009).

    Article  ADS  Google Scholar 

  13. Gottesman, D., Lo, H-K., Lütkenhaus, N. & Preskill, J. Security of quantum key distribution with imperfect devices. Quant. Inf. Comp. 5, 325–360 (2004).

    MathSciNet  MATH  Google Scholar 

  14. Bennett, C. H. & Brassard, G. Experimental quantum cryptography: the dawn of a new era for quantum cryptography: the experimental prototype is working. Sigact News 20, 78–80 (1989).

    Article  Google Scholar 

  15. Hiskett, P. A. et al. Long-distance quantum key distribution in optical fibre. New J. Phys. 8, 193 (2006).

    Article  ADS  Google Scholar 

  16. Rosenberg, D. et al. Practical long-distance quantum key distribution system using decoy levels. New J. Phys. 11, 045009 (2009).

    Article  ADS  Google Scholar 

  17. Ursin, R. et al. Entanglement-based quantum communication over 144 km. Nature Phys. 3, 481–486 (2007).

    Article  ADS  Google Scholar 

  18. Scheidl, T. et al. Feasibility of 300 km quantum key distribution with entangled states. New J. Phys. 11, 085002 (2009).

    Article  ADS  Google Scholar 

  19. Fedrizzi, A. et al. High-fidelity transmission of entanglement over a high-loss free-space channel. Nature Phys. 5, 389–392 (2009).

    Article  ADS  Google Scholar 

  20. Yin, J. et al. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488, 185–188 (2012).

    ADS  Google Scholar 

  21. Ma, X. et al. Quantum teleportation over 143 kilometres using active feed-forward. Nature 489, 269–273 (2012).

    ADS  Google Scholar 

  22. Horwath, J. & Fuchs, C. Aircraft to ground unidirectional laser-communication terminal for high resolution sensors. Proc. SPIE, 7199, 719909 (2009).

    Article  Google Scholar 

  23. Takayama, Y. et al. Expanded laser communications demonstrations with oicets and ground stations. Proc. SPIE, 7587, 75870D (2010).

    Article  Google Scholar 

  24. Giggenbach, D., Horwath, J. & Markus, K. Optical data downlinks from earth observation platforms. Proc. SPIE, 7199, 719903 (2009).

    Article  Google Scholar 

  25. Weier, H., Schmitt-Manderbach, T., Regner, N., Kurtsiefer, C. & Weinfurter, H. Free space quantum key distribution: towards a real life application. Fortschr. Phys. 54, 840–845 (2006).

    Article  Google Scholar 

  26. Nauerth, S., Fürst, M., Schmitt-Manderbach, T., Weier, H. & Weinfurter, H. Information leakage via side channels in freespace BB84 quantum cryptography. New J. Phys. 11, 065001 (2009).

    Article  ADS  Google Scholar 

  27. Ma, X., Qi, B., Zhao, Y. & Lo, H-K. Practical decoy state for quantum key distribution. Phys. Rev. A 72, 012326 (2005).

    Article  ADS  Google Scholar 

  28. Lo, H-K., Ma, X. & Chen, K. Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005).

    Article  ADS  Google Scholar 

  29. Moll, F. et al. Communication system technology for demonstration of BB84 quantum key distribution in optical aircraft downlinks. Proc. SPIE, 8517, 851703 (2012).

    Article  Google Scholar 

  30. Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948).

    Article  MathSciNet  Google Scholar 

  31. Lo, H., Chau, H. & Ardehali, M. Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol. 18, 133–165 (2005).

    Article  MathSciNet  Google Scholar 

  32. Zhao, Y., Qi, B., Ma, X., Lo, H. & Qian, L. Experimental quantum key distribution with decoy states. Phys. Rev. Lett. 96, 070502 (2006).

    Article  ADS  Google Scholar 

  33. Cai, R. & Scarani, V. Finite-key analysis for practical implementations of quantum key distribution. New J. Phys. 11, 045024 (2009).

    Article  ADS  Google Scholar 

  34. Song, T., Zhang, J., Qin, S. & Wen, Q. Finite-key analysis for quantum key distribution with decoy states. Quant. Inf. Comp. 11, 374–389 (2011).

    MathSciNet  MATH  Google Scholar 

  35. Hasegawa, J., Hayashi, M., Hiroshima, T. & Tomita, A. Security analysis of decoy state quantum key distribution incorporating finite statistics. Preprint at (2007).

Download references


The authors acknowledge funding by the EU (Q-ESSENCE) and the German Bundesministerium für Bildung und Forschung (CHIST-ERA project QUASAR). S.N. acknowledges support by the Elite Network of Bavaria through the excellence programme QCCC.

Author information

Authors and Affiliations



All authors contributed equally to the realization of the experiment, discussed the results and commented on the manuscript at all stages. S.N., M.R. and S.F. designed, built and operated the QKD hardware new to this project. F.M., C.F. and J.H. initially developed the optical communications (classical) system, took care of modifications and operations and organized the flight campaign, including airworthiness certification. S.N. evaluated the data and H.W. supervised the work.

Corresponding author

Correspondence to Sebastian Nauerth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nauerth, S., Moll, F., Rau, M. et al. Air-to-ground quantum communication. Nature Photon 7, 382–386 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing