Letter | Published:

On-demand generation of indistinguishable polarization-entangled photon pairs

Nature Photonics volume 8, pages 224228 (2014) | Download Citation

Abstract

An on-demand source of indistinguishable and entangled photon pairs is a fundamental component of various quantum information applications, including optical quantum computing, quantum repeaters, quantum teleportation and quantum communication1. Parametric downconversion2,3 and four-wave mixing sources4 of entangled photons have shown high degrees of entanglement and indistinguishability, but the probabilistic nature of their generation process also creates zero or multiple photon pairs following a Poissonian distribution. This limits their use in complex algorithms where many qubits and gate operations are required. Here, we simultaneously show ultrahigh purity (g(2)(0) < 0.004), high entanglement fidelity (0.81 ± 0.02), high two-photon interference non-post selective visibilities (0.86 ± 0.03 and 0.71 ± 0.04) and on-demand generation (efficiency εpair = 0.86 ± 0.08) of polarization-entangled photon pairs from a single semiconductor quantum dot. Through a two-photon resonant excitation scheme, the biexciton population is deterministically prepared by a π-pulse (εbiexciton = 0.98 ± 0.07). Applied on a quantum dot showing no exciton fine-structure splitting, this results in the deterministic generation of indistinguishable entangled photon pairs.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & The Physics of Quantum Information (Springer, 2000).

  2. 2.

    , & Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

  3. 3.

    et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).

  4. 4.

    , , , & Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source. Phys. Rev. Lett. 99, 120501 (2007).

  5. 5.

    et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).

  6. 6.

    , , & Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 92, 057901 (2004).

  7. 7.

    , & Experimental tests of realistic local theories via Bell's theorem. Phys. Rev. Lett. 47, 460–463 (1981).

  8. 8.

    , , & Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000).

  9. 9.

    et al. Ultrabright source of entangled photon pairs. Nature 466, 217–220 (2010).

  10. 10.

    et al. A semiconductor source of triggered entangled photon pairs. Nature 439, 179–182 (2006). Commented and corrected in Young, R. J. et al. Improved fidelity of triggered entangled photons from single quantum dots. New J. Phys. 8, 29 (2006).

  11. 11.

    et al. Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K. New J. Phys. 9, 315 (2007).

  12. 12.

    et al. Indistinguishable entangled photons generated by a light-emitting diode. Phys. Rev. Lett. 108, 040503 (2012).

  13. 13.

    et al. Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity. Phys. Rev. Lett. 103, 167402 (2009).

  14. 14.

    et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nature Nanotech. 8, 213–217 (2013).

  15. 15.

    , , & Generation of ultraviolet entangled photons in a semiconductor. Nature 431, 167–170 (2004).

  16. 16.

    , & Photon polarization entanglement induced by biexciton: experimental evidence for violation of Bell's inequality. Phys. Rev. Lett. 98, 140503 (2007).

  17. 17.

    et al. Two-photon Rabi oscillations in a single InxGa1−xAs/GaAs quantum dot. Phys. Rev. B 73, 125304 (2006).

  18. 18.

    , , , & Sharp-line photoluminescence and two-photon absorption of zero-dimensional biexcitons in a GaAs/AlGaAs structure. Phys. Rev. Lett. 73, 1138–1141 (1994).

  19. 19.

    et al. Deterministic photon pairs and coherent optical control of a single quantum dot. Phys. Rev. Lett. 110, 135505 (2013).

  20. 20.

    et al. High-frequency single-photon source with polarization control. Nature Photon. 1, 704–708 (2007).

  21. 21.

    , , & Spin-resolved quantum-dot resonance fluorescence. Nature Phys. 5, 198–202 (2009).

  22. 22.

    et al. Optically gated resonant emission of single quantum dots. Phys. Rev. Lett. 108, 057401 (2012).

  23. 23.

    , , & Phonon-assisted damping of Rabi oscillations in semiconductor quantum dots. Phys. Rev. Lett. 91, 127401 (2003).

  24. 24.

    et al. Biexciton state preparation in a quantum dot via adiabatic rapid passage: comparison between two control protocols and impact of phonon-induced dephasing. Phys. Rev. B 87, 085303 (2013).

  25. 25.

    et al. Coherence of an entangled exciton–photon state. Phys. Rev. Lett. 99, 266802 (2007).

  26. 26.

    , & The role of phonon scattering in the indistinguishability of photons emitted from semiconductor cavity QED systems. New J. Phys. 15, 035027 (2013).

  27. 27.

    , , , & Single-photon generation with InAs quantum dots. New J. Phys. 6, 89 (2004).

  28. 28.

    , & Analysis of the photon indistinguishability in incoherently excited quantum dots. Phys. Rev. B 73, 035316 (2006).

  29. 29.

    et al. Quantum teleportation using a light-emitting diode. Nature Photon. 7, 311–315 (2013).

  30. 30.

    et al. Ultrafast optical spin echo in a single quantum dot. Nature Photon. 4, 367–370 (2010).

  31. 31.

    , , , & Towards quantum-dot arrays of entangled photon emitters. Nature Photon. 7, 527–531 (2013).

  32. 32.

    et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nature Photon. 4, 174–177 (2010).

  33. 33.

    , , , & Real-time path integrals for quantum dots: quantum dissipative dynamics with superohmic environment coupling. Phys. Rev. B 83, 094303 (2011).

Download references

Acknowledgements

The authors thank L. Wang, A. Rastelli and O. G. Schmidt for providing the high-quality sample. The authors acknowledge financial support from the Deutsche Forschungsgemeinschaft via projects MI 500/23-1 and AX 17/7-1.

Author information

Author notes

    • M. Müller
    •  & S. Bounouar

    These authors contributed equally to this work

Affiliations

  1. Institut für Halbleiteroptik und Funktionelle Grenzflächen, Universität Stuttgart, Allmandring 3, 70569 Stuttgart, Germany

    • M. Müller
    • , S. Bounouar
    • , K. D. Jöns
    •  & P. Michler
  2. Institut für Theoretische Physik III, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany

    • M. Glässl

Authors

  1. Search for M. Müller in:

  2. Search for S. Bounouar in:

  3. Search for K. D. Jöns in:

  4. Search for M. Glässl in:

  5. Search for P. Michler in:

Contributions

M.M., S.B., K.D.J. and P.M. conceived and designed the experiments. M.M., S.B. and K.D.J. performed the experiments. M.M. and S.B. analysed the data. M.G. carried out the theoretical calculations. S.B. and P.M. wrote the manuscript with input from the other authors.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to S. Bounouar or P. Michler.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2013.377

Further reading