Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

On-demand generation of indistinguishable polarization-entangled photon pairs

Abstract

An on-demand source of indistinguishable and entangled photon pairs is a fundamental component of various quantum information applications, including optical quantum computing, quantum repeaters, quantum teleportation and quantum communication1. Parametric downconversion2,3 and four-wave mixing sources4 of entangled photons have shown high degrees of entanglement and indistinguishability, but the probabilistic nature of their generation process also creates zero or multiple photon pairs following a Poissonian distribution. This limits their use in complex algorithms where many qubits and gate operations are required. Here, we simultaneously show ultrahigh purity (g(2)(0) < 0.004), high entanglement fidelity (0.81 ± 0.02), high two-photon interference non-post selective visibilities (0.86 ± 0.03 and 0.71 ± 0.04) and on-demand generation (efficiency εpair = 0.86 ± 0.08) of polarization-entangled photon pairs from a single semiconductor quantum dot. Through a two-photon resonant excitation scheme, the biexciton population is deterministically prepared by a π-pulse (εbiexciton = 0.98 ± 0.07). Applied on a quantum dot showing no exciton fine-structure splitting, this results in the deterministic generation of indistinguishable entangled photon pairs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two-photon biexciton excitation scheme for a quantum dot exhibiting no excitonic fine-structure splitting.
Figure 2: Autocorrelation histograms, under resonant excitation.
Figure 3: Integrated intensities, under resonant excitation.
Figure 4: Biexciton–exciton polarization-dependent cross-correlation histograms under resonant excitation.
Figure 5: Two-photon interference histograms, obtained under resonant excitation.

Similar content being viewed by others

References

  1. Bouwmeester, D., Ekert, A. K. & Zeilinger, A. The Physics of Quantum Information (Springer, 2000).

    Book  Google Scholar 

  2. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    Article  ADS  Google Scholar 

  3. Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).

    Article  ADS  Google Scholar 

  4. Fulconis, J., Alibart, O., O'Brien, J. L., Wadsworth, W. J. & Rarity, J. G. Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source. Phys. Rev. Lett. 99, 120501 (2007).

    Article  ADS  Google Scholar 

  5. Pan, J.-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).

    Article  ADS  Google Scholar 

  6. Scarani, V., Acín, A., Ribordy, G. & Gisin, N. Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 92, 057901 (2004).

    Article  ADS  Google Scholar 

  7. Aspect, A., Grangier, P. & Roger, G. Experimental tests of realistic local theories via Bell's theorem. Phys. Rev. Lett. 47, 460–463 (1981).

    Article  ADS  Google Scholar 

  8. Benson, O., Santori, C., Pelton, M. & Yamamoto, Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000).

    Article  ADS  Google Scholar 

  9. Dousse, A. et al. Ultrabright source of entangled photon pairs. Nature 466, 217–220 (2010).

    Article  ADS  Google Scholar 

  10. Stevenson, R. M. et al. A semiconductor source of triggered entangled photon pairs. Nature 439, 179–182 (2006). Commented and corrected in Young, R. J. et al. Improved fidelity of triggered entangled photons from single quantum dots. New J. Phys. 8, 29 (2006).

    Article  ADS  Google Scholar 

  11. Hafenbrak, R. et al. Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K. New J. Phys. 9, 315 (2007).

    Article  ADS  Google Scholar 

  12. Stevenson, R. M. et al. Indistinguishable entangled photons generated by a light-emitting diode. Phys. Rev. Lett. 108, 040503 (2012).

    Article  ADS  Google Scholar 

  13. Ates, S. et al. Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity. Phys. Rev. Lett. 103, 167402 (2009).

    Article  ADS  Google Scholar 

  14. He, Y.-M. et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nature Nanotech. 8, 213–217 (2013).

    Article  ADS  Google Scholar 

  15. Edamatsu, K., Oohata, G., Shimizu, R. & Itho, T. Generation of ultraviolet entangled photons in a semiconductor. Nature 431, 167–170 (2004).

    Article  ADS  Google Scholar 

  16. Oohata, G., Shimizu, R. & Edamatsu, K. Photon polarization entanglement induced by biexciton: experimental evidence for violation of Bell's inequality. Phys. Rev. Lett. 98, 140503 (2007).

    Article  ADS  Google Scholar 

  17. Stufler, S. et al. Two-photon Rabi oscillations in a single InxGa1−xAs/GaAs quantum dot. Phys. Rev. B 73, 125304 (2006).

    Article  ADS  Google Scholar 

  18. Brunner, K., Abstreiter, G., Böhm, G., Tränkle, G. & Weimann, G. Sharp-line photoluminescence and two-photon absorption of zero-dimensional biexcitons in a GaAs/AlGaAs structure. Phys. Rev. Lett. 73, 1138–1141 (1994).

    Article  ADS  Google Scholar 

  19. Jayakumar, H. et al. Deterministic photon pairs and coherent optical control of a single quantum dot. Phys. Rev. Lett. 110, 135505 (2013).

    Article  ADS  Google Scholar 

  20. Strauf, S. et al. High-frequency single-photon source with polarization control. Nature Photon. 1, 704–708 (2007).

    Article  ADS  Google Scholar 

  21. Vamivakas, A. N., Zhao, Y., Lu, C.-Y. & Atatüre, M. Spin-resolved quantum-dot resonance fluorescence. Nature Phys. 5, 198–202 (2009).

    Article  ADS  Google Scholar 

  22. Nguyen, H. S. et al. Optically gated resonant emission of single quantum dots. Phys. Rev. Lett. 108, 057401 (2012).

    Article  ADS  Google Scholar 

  23. Förstner, J., Weber, C., Danckwerts, J. & Knorr, A. Phonon-assisted damping of Rabi oscillations in semiconductor quantum dots. Phys. Rev. Lett. 91, 127401 (2003).

    Article  ADS  Google Scholar 

  24. Glässl, M. et al. Biexciton state preparation in a quantum dot via adiabatic rapid passage: comparison between two control protocols and impact of phonon-induced dephasing. Phys. Rev. B 87, 085303 (2013).

    Article  ADS  Google Scholar 

  25. Hudson, A. J. et al. Coherence of an entangled exciton–photon state. Phys. Rev. Lett. 99, 266802 (2007).

    Article  ADS  Google Scholar 

  26. Kaer, P., Gregersen, N. & Mork, J. The role of phonon scattering in the indistinguishability of photons emitted from semiconductor cavity QED systems. New J. Phys. 15, 035027 (2013).

    Article  ADS  Google Scholar 

  27. Santori, C., Fattal, D., Vučković, J., Solomon, G. S. & Yamamoto, Y. Single-photon generation with InAs quantum dots. New J. Phys. 6, 89 (2004).

    Article  ADS  Google Scholar 

  28. Troiani, F., Perea, J. I. & Tejedor, C. Analysis of the photon indistinguishability in incoherently excited quantum dots. Phys. Rev. B 73, 035316 (2006).

    Article  ADS  Google Scholar 

  29. Nilsson, J. et al. Quantum teleportation using a light-emitting diode. Nature Photon. 7, 311–315 (2013).

    Article  ADS  Google Scholar 

  30. Press, D. et al. Ultrafast optical spin echo in a single quantum dot. Nature Photon. 4, 367–370 (2010).

    Article  ADS  Google Scholar 

  31. Juska, G., Dimastrodonato, V., Mereni, L. O., Gocalinska, A. & Pelucchi, E. Towards quantum-dot arrays of entangled photon emitters. Nature Photon. 7, 527–531 (2013).

    Article  ADS  Google Scholar 

  32. Claudon, J. et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nature Photon. 4, 174–177 (2010).

    Article  ADS  Google Scholar 

  33. Vagov, A., Croitoru, M. D., Glässl, M., Axt, V. M. & Kuhn, T. Real-time path integrals for quantum dots: quantum dissipative dynamics with superohmic environment coupling. Phys. Rev. B 83, 094303 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank L. Wang, A. Rastelli and O. G. Schmidt for providing the high-quality sample. The authors acknowledge financial support from the Deutsche Forschungsgemeinschaft via projects MI 500/23-1 and AX 17/7-1.

Author information

Authors and Affiliations

Authors

Contributions

M.M., S.B., K.D.J. and P.M. conceived and designed the experiments. M.M., S.B. and K.D.J. performed the experiments. M.M. and S.B. analysed the data. M.G. carried out the theoretical calculations. S.B. and P.M. wrote the manuscript with input from the other authors.

Corresponding authors

Correspondence to S. Bounouar or P. Michler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 762 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, M., Bounouar, S., Jöns, K. et al. On-demand generation of indistinguishable polarization-entangled photon pairs. Nature Photon 8, 224–228 (2014). https://doi.org/10.1038/nphoton.2013.377

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.377

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing