Demon-like algorithmic quantum cooling and its realization with quantum optics

  • A Corrigendum to this article was published on 28 February 2014

Abstract

Simulation of the low-temperature properties of many-body systems remains one of the major challenges in theoretical1,2,3 and experimental4,5,6 quantum information science. We present, and demonstrate experimentally, a universal (pseudo) cooling method that is applicable to any physical system that can be simulated by a quantum computer7,8,9. This method allows us to distil and eliminate hot components of quantum states like a quantum Maxwell's demon11,10. The experimental implementation is realized with a quantum optical network, and the results are in full agreement with theoretical predictions (with fidelity higher than 0.978). Applications of the proposed pseudo-cooling method include simulations of the low-temperature properties of physical and chemical systems that are intractable with classical methods.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Basic principle of the pseudo-cooling method.
Figure 2: Experimental details.
Figure 3: Experimental results.
Figure 4: Experimental results.

Change history

  • 05 February 2014

    In the version of this Letter originally published online and in print, the affiliation of Sergio Boixo was incorrectly given. He is affiliated with the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA. This has now been corrected in the HTML and PDF versions of this Letter.

References

  1. 1

    Jordan, S. P., Lee, K. S. M. & Preskill, J. Quantum algorithms for quantum field theories. Science 336, 1130–1133 (2012).

    ADS  Article  Google Scholar 

  2. 2

    Casanova, J., Mezzacapo, A., Lamata, L. & Solano, E. Quantum simulation of interacting fermion lattice models in trapped ions. Phys. Rev. Lett. 108, 190502 (2012).

    ADS  Article  Google Scholar 

  3. 3

    Kassal, I., Jordan, S. P., Love, P. J., Mohseni, M. & Aspuru-Guzik, A. Polynomial-time quantum algorithm for the simulation of chemical dynamics. Proc. Natl Acad. Sci. USA 105, 18681–18686 (2008).

    ADS  Article  Google Scholar 

  4. 4

    Baugh, J., Moussa, O., Ryan, C. A, Nayak, A. & Laflamme, R. Experimental implementation of heat-bath algorithmic cooling using solid-state nuclear magnetic resonance. Nature 438, 470–473 (2005).

    ADS  Article  Google Scholar 

  5. 5

    Barreiro, J. T. et al. An open-system quantum simulator with trapped ions. Nature 470, 486–491 (2011).

    ADS  Article  Google Scholar 

  6. 6

    Zhang, J., Yung, M.-H., Laflamme, R., Aspuru-Guzik, A. & Baugh, J. Digital quantum simulation of the statistical mechanics of a frustrated magnet. Nature Commun. 3, 880 (2012).

    ADS  Article  Google Scholar 

  7. 7

    Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996).

    ADS  MathSciNet  Article  Google Scholar 

  8. 8

    Buluta, I. & Nori, F. Quantum simulators. Science 326, 108–111 (2009).

    ADS  Article  Google Scholar 

  9. 9

    Kassal, I., Whitfield, J. D., Perdomo-Ortiz, A., Yung, M.-H. & Aspuru-Guzik, A. Simulating chemistry using quantum computers. Annu. Rev. Phys. Chem. 62, 185–207 (2011).

    ADS  Article  Google Scholar 

  10. 10

    Toyabe, S., Sagawa, T., Ueda, M., Muneyuki, E. & Sano, M. Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality. Nature Phys. 6, 988–992 (2010).

    ADS  Article  Google Scholar 

  11. 11

    Lupascu, A. et al. Quantum non-demolition measurement of a superconducting two-level system. Nature Phys. 3, 119–125 (2007).

    ADS  Article  Google Scholar 

  12. 12

    Álvarez, G. A., Rao, D. D., Frydman, L. & Kurizki, G. Zeno and anti-Zeno polarization control of spin ensembles by induced dephasing. Phys. Rev. Lett. 105, 160401 (2010).

    ADS  Article  Google Scholar 

  13. 13

    Takahashi, S. et al. Decoherence in crystals of quantum molecular magnets. Nature 476, 76–79 (2011).

    Article  Google Scholar 

  14. 14

    Poulin, D. & Wocjan, P. Sampling from the thermal quantum Gibbs state and evaluating partition functions with a quantum computer. Phys. Rev. Lett. 103, 220502 (2009).

    ADS  MathSciNet  Article  Google Scholar 

  15. 15

    Yung, M.-H. & Aspuru-Guzik, A. A quantum-quantum Metropolis algorithm. Proc. Natl Acad. Sci. USA 109, 754–759 (2012).

    ADS  Article  Google Scholar 

  16. 16

    Aharonov, D. et al. Adiabatic quantum computation is equivalent to standard quantum computation. SIAM J. Comput. 37, 166–194 (2007).

    MathSciNet  Article  Google Scholar 

  17. 17

    Wei, T.-C., Affleck, I. & Raussendorf, R. Affleck–Kennedy–Lieb–Tasaki state on a honeycomb lattice is a universal quantum computational resource. Phys. Rev. Lett. 106, 070501 (2011).

    ADS  MathSciNet  Article  Google Scholar 

  18. 18

    Boykin, P. O., Mor, T., Roychowdhury, V., Vatan, F. & Vrijen, R. Algorithmic cooling and scalable NMR quantum computers. Proc. Natl Acad. Sci. USA 99, 3388–3393 (2002).

    ADS  Article  Google Scholar 

  19. 19

    DiVincenzo, D. P. The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000).

    Article  Google Scholar 

  20. 20

    Kraus, B. et al. Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008).

    ADS  Article  Google Scholar 

  21. 21

    Verstraete, F., Wolf, M. M. & Cirac, J. I. Quantum computation and quantum-state engineering driven by dissipation. Nature Phys. 5, 633–636 (2009).

    ADS  Article  Google Scholar 

  22. 22

    Weimer, H., Müller, M., Lesanovsky, I., Zoller, P. & Büchler, H. P. A Rydberg quantum simulator. Nature Phys. 6, 382–388 (2010).

    ADS  Article  Google Scholar 

  23. 23

    Elias, Y., Mor, T. & Weinstein, Y. Semioptimal practicable algorithmic cooling. Phys. Rev. A 83, 042340 (2011).

    ADS  Article  Google Scholar 

  24. 24

    Schulman, L. J., Mor, T. & Weinstein, Y. Physical limits of heat-bath algorithmic cooling. Phys. Rev. Lett. 94, 120501 (2005).

    ADS  Article  Google Scholar 

  25. 25

    Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nature Phys. 8, 285–291 (2012).

    ADS  Article  Google Scholar 

  26. 26

    Zhou, X.-Q. et al. Adding control to arbitrary unknown quantum operations. Nature Commun. 2, 413 (2011).

    ADS  Article  Google Scholar 

  27. 27

    Gao, W.-B. et al. Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state. Nature Phys. 6, 331–335 (2010).

    ADS  Article  Google Scholar 

  28. 28

    Lanyon, B. P. et al. Simplifying quantum logic using higher-dimensional Hilbert spaces. Nature Phys. 5, 134–140 (2009).

    ADS  Article  Google Scholar 

  29. 29

    Farhi, E. et al. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292, 472–475 (2001).

    ADS  MathSciNet  Article  Google Scholar 

  30. 30

    Feynman, R. P. Quantum mechanical computers. Opt. News 11, 11–20 (1985).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank A. Eisfeld, I. Kassal, J. Taylor and J. Whitfield for insightful discussions and R. Babbush, S. Mostame and D. Tempel for useful comments and suggestions on the manuscript. The authors acknowledge the following funding sources: National Science Foundation award no. CHE-1037992, Croucher Foundation (to M.H.Y.); Defense Advanced Research Projects Agency under the Young Faculty Award N66001-09-1-2101-DOD35CAP, the Camille and Henry Dreyfus Foundation and the Sloan Foundation; Defense Advanced Research Projects Agency award no. N66001-09-1-2101 (to S.B.); the National Basic Research Program of China (grant no. 2011CB921200), the National Natural Science Foundation of China (grants nos 11274297, 11004185, 61322506, 60921091, 11274289, 11325419, 61327901 and 11174270), the Fundamental Research Funds for the Central Universities (grant nos WK 2030020019 and WK2470000011), the Program for New Century Excellent Talents in University (NCET-12-0508), the Science Foundation for the Excellent PHD Thesis (grant no. 201218) and the Chinese Academy of Sciences. M.H.Y. acknowledges support from the National Basic Research Program of China (grants 2011CBA00300, 2011CBA00301) and the National Natural Science Foundation of China (grants 61033001 and 61061130540).

Author information

Affiliations

Authors

Contributions

M.-H.Y. and A.A.-G. are responsible for the main theoretical idea behind the pseudo-cooling method. S.B. performed detailed analysis on the scaling behaviour of the pseudo-cooling method. M.-H.Y. drafted the preliminary experimental proposal, which was put forward by Z.-W.Z. and C.-F.L. The detailed experimental procedures were designed and carried out by J.-S.X., assisted by X.-Y.X. The experiment was supervised by C.-F.L. and G.-C.G. All authors contributed to writing the manuscript and discussed the experimental procedures and results.

Corresponding authors

Correspondence to Chuan-Feng Li or Alán Aspuru-Guzik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3693 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xu, J., Yung, M., Xu, X. et al. Demon-like algorithmic quantum cooling and its realization with quantum optics. Nature Photon 8, 113–118 (2014). https://doi.org/10.1038/nphoton.2013.354

Download citation

Further reading