Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Solid-state light-phase detector


Attosecond science relies on the use of intense, waveform-controlled, few-cycle laser pulses1 to control extreme nonlinear optical processes taking place within a fraction of an optical period. A number of techniques are available for retrieving the amplitude envelope and chirp of such few-cycle laser pulses. However, their full characterization requires detection of the absolute offset between the rapidly oscillating carrier wave and the pulse envelope, the carrier–envelope phase (CEP). So far, this has only been feasible with photoelectron spectroscopy, relying on complex vacuum set-ups2,3,4. Here, we present a technique that enables the detection of the CEP of few-cycle laser pulses under ambient conditions. This is based on the CEP-dependence of directly measurable electric currents generated by the electric field of light in a metal–dielectric–metal nanojunction. The device holds promise for routine measurement and monitoring of the CEP in attosecond laboratories.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Measurement of the absolute CEP of light pulses by optical-field-induced electric currents in a solid-state device.
Figure 2: Calibration of the CEP-dependent current.
Figure 3: Direct determination of absolute CEP via directly measurable photocurrents.

Similar content being viewed by others


  1. Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    Article  ADS  Google Scholar 

  2. Paulus, G. G. et al. Absolute-phase phenomena in photoionization with few-cycle laser pulses. Nature 414, 182–184 (2001).

    Article  ADS  Google Scholar 

  3. Paulus, G. G. et al. Measurement of the phase of few-cycle laser pulses. Phys. Rev. Lett. 91, 253004 (2003).

    Article  ADS  Google Scholar 

  4. Wittmann, T. et al. Single-shot carrier-envelope phase measurement of few-cycle laser pulses. Nature Phys. 5, 357–362 (2009).

    Article  ADS  Google Scholar 

  5. Chipperfield, L. E., Robinson, J. S., Knight, P. L., Marangos, J. P. & Tisch, J. W. G. The generation and utilisation of half-cycle cut-offs in high harmonic spectra. Laser Photon. Rev. 4, 697–719 (2010).

    Article  ADS  Google Scholar 

  6. Goulielmakis, E. et al. Single-cycle nonlinear optics. Science 320, 1614–1617 (2008).

    Article  ADS  Google Scholar 

  7. Bergues, B. et al. Attosecond tracing of correlated electron-emission in non-sequential double ionization. Nature Commun. 3, 813 (2012).

    Article  ADS  Google Scholar 

  8. Dietrich, P., Krausz, F. & Corkum, P. B. Determining the absolute carrier phase of a few-cycle laser pulse. Opt. Lett. 25, 16–18 (2000).

    Article  ADS  Google Scholar 

  9. Kling, M. F. et al. Control of electron localization in molecular dissociation. Science 312, 246–248 (2006).

    Article  ADS  Google Scholar 

  10. Borot, A. et al. Attosecond control of collective electron motion in plasmas. Nature Phys. 8, 416–421 (2012).

    Article  ADS  Google Scholar 

  11. Apolonski, A. et al. Observation of light-phase-sensitive photoemission from a metal. Phys. Rev. Lett. 92, 073902 (2004).

    Article  ADS  Google Scholar 

  12. Krüger, M., Schenk, M. & Hommelhoff, P. Attosecond control of electrons emitted from a nanoscale metal tip. Nature 475, 78–81 (2011).

    Article  Google Scholar 

  13. Zherebtsov, S. et al. Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields. Nature Phys. 7, 656–662 (2011).

    Article  ADS  Google Scholar 

  14. Kienberger, R. et al. Atomic transient recorder. Nature 427, 817–821 (2004).

    Article  ADS  Google Scholar 

  15. Trebino, R. et al. Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating. Rev. Sci. Instrum. 68, 3277–3295 (1997).

    Article  ADS  Google Scholar 

  16. Iaconis, C. & Walmsley, I. A. Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses. Opt. Lett. 23, 792–794 (1998).

    Article  ADS  Google Scholar 

  17. Witting, T. et al. Sub-4-fs laser pulse characterization by spatially resolved spectral shearing interferometry and attosecond streaking. J. Phys. B 45, 074014 (2012).

    Article  ADS  Google Scholar 

  18. Holzwarth, R. et al. Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 85, 2264–2267 (2000).

    Article  ADS  Google Scholar 

  19. Reichert, J., Holzwarth, R., Udem, T. & Hänsch, T. W. Measuring the frequency of light with mode-locked lasers. Opt. Commun. 172, 59–68 (1999).

    Article  ADS  Google Scholar 

  20. Telle, H. R. et al. Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B 69, 327–332 (1999).

    Article  ADS  Google Scholar 

  21. Xu, L. et al. Route to phase control of ultrashort light pulses. Opt. Lett. 21, 2008–2010 (1996).

    Article  ADS  Google Scholar 

  22. Schiffrin, A. et al. Optical-field-induced current in dielectrics. Nature 493, 70–74 (2013).

    Article  ADS  Google Scholar 

  23. Cavalieri, A. L. et al. Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-X-ray harmonic continua. New J. Phys. 9, 242 (2007).

    Article  ADS  Google Scholar 

  24. Apalkov, V. & Stockman, M. I. Theory of dielectric nanofilms in strong ultrafast optical fields. Phys. Rev. B 86, 165118 (2012).

    Article  ADS  Google Scholar 

  25. Kruchinin, S. Y., Korbman, M. & Yakovlev, V. S. Theory of strong-field injection and control of photocurrent in dielectrics and wide band gap semiconductors. Phys. Rev. B 87, 115201 (2013).

    Article  ADS  Google Scholar 

  26. Kübel, M. et al. Carrier-envelope-phase tagging in measurements with long acquisition times. New J. Phys. 14, 093027 (2012).

    Article  ADS  Google Scholar 

  27. Li, C. et al. Determining the phase-energy coupling coefficient in carrier-envelope phase measurements. Opt. Lett. 32, 796–798 (2007).

    Article  ADS  Google Scholar 

  28. Karpowicz, N. & Zhang, X.-C. Coherent terahertz echo of tunnel ionization in gases. Phys. Rev. Lett. 102, 093001 (2009).

    Article  ADS  Google Scholar 

  29. Muller, H. G. An efficient propagation scheme for the time-dependent Schrödinger equation in the velocity gauge. Laser Phys. 9, 138–148 (1999).

    Google Scholar 

  30. Bian, X. B. et al. Subcycle interference dynamics of time-resolved photoelectron holography with midinfrared laser pulses. Phys. Rev. A 84, 043420 (2011).

    Article  ADS  Google Scholar 

Download references


The authors thank Y. Deng for technical support and fruitful discussions as well as the Munich-Centre for Advanced Photonics for financial support. A.S. acknowledges the Alexander von Humboldt Foundation and the Swiss National Science Foundation. N.K. acknowledges the Alexander von Humboldt Foundation. Ö.S. acknowledges a Marie Curie International Incoming Fellowship (project NANOULOP, no. 302157). R.K. acknowledges an ERC starting grant.

Author information

Authors and Affiliations



T.P.-C., A.S., R.K., R.E. and F.K. conceived and supervised the experiments. A.S., T.P.-C., D.G., O.R., S.M., J.R. and J.V.B. participated in sample design and fabrication. T.P.-C., A.S., N.K., A.A., Sa.K. and Ö.S. performed the measurements. St.K., V.A., M.I.S. and V.S.Y. provided the theoretical description and numerical modelling of the solid-state device for phase detection. T.P.-C. and N.K. performed numerical simulations and analysis of the stereo-ATI measurements. T.W. provided the stereo-ATI phasemeter. T.P.-C., A.S., N.K., St.K., M.K., T.W., V.S.Y., R.K., R.E. and F.K. analysed and interpreted the experimental data. All authors discussed the results and contributed to the final manuscript.

Corresponding authors

Correspondence to Tim Paasch-Colberg or Ferenc Krausz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paasch-Colberg, T., Schiffrin, A., Karpowicz, N. et al. Solid-state light-phase detector. Nature Photon 8, 214–218 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing