Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques

Abstract

Organic–inorganic hybrid solar cells that combine a mesoporous scaffold, a perovskite light absorber and an organic hole transporter have emerged at the forefront of solution-processable photovoltaic devices; however, they require processing temperatures of up to 500 °C to sinter the mesoporous metal-oxide support. Here, we report the use of a thin film of ZnO nanoparticles as an electron-transport layer in CH3NH3PbI3-based solar cells; in contrast to mesoporous TiO2, the ZnO layer is both substantially thinner and requires no sintering. We took advantage of these facts to prepare flexible solar cells with power-conversion efficiencies in excess of 10%. The use of ZnO also results in improvements to device performance for cells prepared on rigid substrates. Solar cells based on this design exhibit power-conversion efficiencies as high as 15.7% when measured under AM1.5G illumination, which makes them some of the highest-performing perovskite solar cells reported to date.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device architecture and energy-level diagram.
Figure 2: Histograms of device parameters measured for 108 separate ITO/ZnO/CH3NH3PbI3/spiro-OMeTAD/Ag devices.
Figure 3: J–V curves and IPCE spectrum of the highest-performing device in this study.
Figure 4: SEM micrographs of the ITO/ZnO/CH3NH3PbI3 film.
Figure 5: Device performance, IPCE spectrum, photograph and bending tests for a device prepared on a flexible PET substrate.

Similar content being viewed by others

References

  1. Park, S. H. et al. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photon. 3, 297–302 (2009).

    Article  ADS  Google Scholar 

  2. Chen, H-Y. et al. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photon. 3, 649–653 (2009).

    Article  ADS  Google Scholar 

  3. Guo, X. et al. Polymer solar cells with enhanced fill factors. Nature Photon. 7, 825–833 (2013).

    Article  ADS  Google Scholar 

  4. Hardin, B. E., Snaith, H. J. & McGehee, M. D. The renaissance of dye-sensitized solar cells. Nature Photon. 6, 162–169 (2012).

    Article  ADS  Google Scholar 

  5. Yella, A. et al. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334, 629–634 (2011).

    Article  ADS  Google Scholar 

  6. Park, N-G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett. 4, 2423–2429 (2013).

    Article  Google Scholar 

  7. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Google Scholar 

  8. Zhao, Y. & Zhu, K. Charge transport and recombination in perovskite (CH3NH3)PbI3 sensitized TiO2 solar cells. J. Phys. Chem. Lett. 4, 2880–2884 (2013).

    Article  Google Scholar 

  9. Im, J-H., Lee, C-R., Lee, J-W., Park, S-W. & Park, N-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088–4093 (2011).

    Article  ADS  Google Scholar 

  10. Noh, J. H. et al. Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material. J. Mater. Chem. A 1, 11842–11847 (2013).

    Article  Google Scholar 

  11. Kim, H-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).

    Article  Google Scholar 

  12. Chung, I., Lee, B., He, J., Chang, R. P. H. & Kanatzidis, M. G. All-solid-state dye-sensitized solar cells with high efficiency. Nature 485, 486–489 (2012).

    Article  ADS  Google Scholar 

  13. Etgar, L. et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134, 17396–17399 (2012).

    Article  Google Scholar 

  14. Edri, E., Kirmayer, S., Cahen, D. & Hodes, G. High open-circuit voltage solar cells based on organic–inorganic lead bromide perovskite. J. Phys. Chem. Lett. 4, 897–902 (2013).

    Article  Google Scholar 

  15. Im, J-H., Chung, J., Kim, S-J. & Park, N-G. Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer (CH3CH2NH3)PbI3 . Nanoscale Res. Lett. 7, 353–359 (2012).

    Article  ADS  Google Scholar 

  16. Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N. & Seok, S. I. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013).

    Article  ADS  Google Scholar 

  17. Cai, B., Xing, Y., Yang, Z., Zhang, W-H. & Qiu, J. High performance hybrid solar cells sensitized by organolead halide perovskites. Energy Environ. Sci. 6, 1480–1485 (2013).

    Article  Google Scholar 

  18. Qiu, J. et al. All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. Nanoscale 5, 3245–3248 (2013).

    Article  ADS  Google Scholar 

  19. Bi, D., Yang, L., Boschloo, G., Hagfeldt, A. & Johansson, E. M. J. Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. J. Phys. Chem. Lett. 4, 1532–1536 (2013).

    Article  Google Scholar 

  20. Heo, J. H. et al. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photon. 7, 486–491 (2013).

    Article  ADS  Google Scholar 

  21. Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).

    Article  ADS  Google Scholar 

  22. McGehee, M. D. Materials science: fast-track solar cells. Nature 501, 323–325 (2013).

    Article  ADS  Google Scholar 

  23. Boix, P. P. et al. Role of ZnO electron-selective layers in regular and inverted bulk heterojunction solar cells. J. Phys. Chem. Lett. 2, 407–411 (2011).

    Article  Google Scholar 

  24. Ha, Y. E. et al. Inverted type polymer solar cells with self-assembled monolayer treated ZnO. J. Phys. Chem. C 117, 2646–2652 (2013).

    Article  Google Scholar 

  25. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    Article  ADS  Google Scholar 

  26. Zhang, W. et al. Enhancement of perovskite-based solar cells employing core–shell metal nanoparticles. Nano Lett. 13, 4505–4510 (2013).

    Article  ADS  Google Scholar 

  27. Ball, J. M., Lee, M. M., Hey, A. & Snaith, H. J. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 6, 1739–1743 (2013).

    Article  Google Scholar 

  28. Carnie, M. J. et al. A one-step low temperature processing route for organolead halide perovskite solar cells. Chem. Commun. 49, 7893–7895 (2013).

    Article  Google Scholar 

  29. Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013).

    Article  ADS  Google Scholar 

  30. Eperon, G. E., Burlakov, V. M., Docampo, P., Goriely, A. & Snaith, H. J. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. http://dx.doi.org/10.1002/adfm.201302090.

  31. Zhang, Q., Dandeneau, C. S., Zhou, X. & Cao, G. ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 21, 4087–4108 (2009).

    Article  Google Scholar 

  32. Beek, W. J. E., Wienk, M. M., Kemerink, M., Yang, X. & Janssen, R. A. J. Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells. J. Phys. Chem. B 109, 9505–9516 (2005).

    Article  Google Scholar 

  33. Pacholski, C., Kornowski, A. & Weller, H. Self-assembly of ZnO: from nanodots to nanorods. Angew. Chem. Int. Ed. 41, 1188–1191 (2002).

    Article  Google Scholar 

  34. Baikie, T. et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 1, 5628–5641 (2013).

    Article  Google Scholar 

  35. Stranks, S. D. et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    Article  ADS  Google Scholar 

  36. Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3 . Science 342, 344–347 (2013).

    Article  ADS  Google Scholar 

  37. Kaltenbrunner, M. et al. Ultrathin and lightweight organic solar cells with high flexibility. Nature Commun. 3, 770 (2012).

    Article  ADS  Google Scholar 

  38. Kumar, M. H. et al. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem. Commun. 49, 11089–11091 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The Natural Sciences and Engineering Research Council of Canada and the University of Saskatchewan are acknowledged for financial support. T.L.K. is a Canada Research Chair in Photovoltaics. The research was undertaken, in part, thanks to funding from the Canada Research Chair Program. L. Liu is acknowledged for the synthesis of the ZnO nanoparticles. F. Borondics and G. Wells are acknowledged for their assistance with the SEM measurements. Z. Zhang is also gratefully acknowledged for her assistance with the high-resolution SEM and TEM measurements. A. Grosvenor is acknowledged for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

D.L. carried out the device fabrication and performance measurements. T.L.K. prepared the manuscript and directed the study. Both D.L. and T.L.K. conceived the experiments, and contributed to data analysis, the discussion of the results and manuscript revisions.

Corresponding author

Correspondence to Timothy L. Kelly.

Ethics declarations

Competing interests

D.L. and T.K. are named inventors on US provisional patent application 61/891,020 (filing date 15.10.2013), which is related to the techniques described in this article.

Supplementary information

Supplementary information

Supplementary information (PDF 1176 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, D., Kelly, T. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photon 8, 133–138 (2014). https://doi.org/10.1038/nphoton.2013.342

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.342

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing