Letter | Published:

Wavelength-multiplexed quantum networks with ultrafast frequency combs

Nature Photonics volume 8, pages 109112 (2014) | Download Citation

Abstract

Highly entangled quantum networks (cluster states) lie at the heart of recent approaches to quantum computing1,2. Yet the current approach for constructing optical quantum networks does so one node at a time3,4,5, which lacks scalability. Here, we demonstrate the single-step fabrication of a multimode quantum resource from the parametric downconversion of femtosecond-frequency combs. Ultrafast pulse shaping6 is employed to characterize the comb's spectral entanglement7,8. Each of the 511 possible bipartitions among ten spectral regions is shown to be entangled; furthermore, an eigenmode decomposition reveals that eight independent quantum channels9 (qumodes) are subsumed within the comb. This multicolour entanglement imports the classical concept of wavelength-division multiplexing to the quantum domain by playing upon frequency entanglement to enhance the capacity of quantum-information processing. The quantum frequency comb is easily addressable, robust with respect to decoherence and scalable, which renders it a unique tool for quantum information.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Universal quantum computation with continuous-variable cluster states. Phys. Rev. Lett. 97, 110501 (2006).

  2. 2.

    et al. Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012).

  3. 3.

    , , & Experimental generation of four-mode continuous-variable cluster states. Phys. Rev. A 78, 012301 (2008).

  4. 4.

    et al. Quantum error correction beyond qubits. Nature Phys. 5, 541–546 (2009).

  5. 5.

    et al. Experimental preparation of eight-partite cluster state for photonic qumodes. Opt. Lett. 37, 5178–5180 (2012).

  6. 6.

    Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1929–1960 (2000).

  7. 7.

    & Detecting genuine multipartite continuous-variable entanglement. Phys. Rev. A 67, 052315 (2003).

  8. 8.

    , , , & Adaptive detection of arbitrarily shaped ultrashort quantum light states. Phys. Rev. Lett. 109, 053602 (2012).

  9. 9.

    & Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005).

  10. 10.

    , & One-way quantum computing in the optical frequency comb. Phys. Rev. Lett. 101, 130501 (2008).

  11. 11.

    et al. Demonstration of unconditional one-way quantum computations for continuous variables. Phys. Rev. Lett. 106, 240504 (2011).

  12. 12.

    , , , & Parallel generation of quadripartite cluster entanglement in the optical frequency comb. Phys. Rev. Lett. 107, 030505 (2011).

  13. 13.

    et al. Generation and characterization of multimode quantum frequency combs. Phys. Rev. Lett. 108, 083601 (2012).

  14. 14.

    , & Eliminating frequency and space–time correlations in multiphoton states. Phys. Rev. A 64, 063815 (2001).

  15. 15.

    et al. Heralded generation of ultrafast single photons in pure quantum states. Phys. Rev. Lett. 100, 133601 (2008).

  16. 16.

    , , & Quantum theory of synchronously pumped type I optical parametric oscillators: characterization of the squeezed supermodes. Eur. Phys. J. D 56, 123–140 (2010).

  17. 17.

    & Optimal entanglement witnesses for continuous-variable systems. New J. Phys. 8, 51 (2006).

  18. 18.

    , , & Inseparability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2722–2725 (2000).

  19. 19.

    , , & Experimental investigation of criteria for continuous variable entanglement. Phys. Rev. Lett. 90, 043601 (2003).

  20. 20.

    Peres–Horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2726–2729 (2000).

  21. 21.

    , , , & Quantum noise in multipixel image processing. Phys. Rev. A 71, 013820 (2005).

  22. 22.

    , & Mode structure and photon number correlations in squeezed quantum pulses. Phys. Rev. A 66, 053813 (2002).

  23. 23.

    Squeezing as an irreducible resource. Phys. Rev. A 71, 055801 (2005).

  24. 24.

    , , , & Compact gaussian quantum computation by multi-pixel homodyne detection. New J. Phys. 15, 093015 (2013).

  25. 25.

    et al. Programmable multimode quantum networks. Nature Commun. 3, 1026 (2012).

  26. 26.

    et al. Ultra-large-scale continuous-variable cluster states multiplexed in the time domain. Nature Photon. 7, 982–986 (2013).

  27. 27.

    , & Quantum improvement of time transfer between remote clocks. Phys. Rev. Lett. 101, 123601 (2008).

  28. 28.

    , , & Diffraction-based femtosecond pulse shaping with a two-dimensional spatial light modulator. Opt. Lett. 30, 323–325 (2005).

Download references

Acknowledgements

This work is supported by the French National Research Agency project Qualitime as well as the European Research Council starting grant Frecquam. C.F. is a member of the Institut Universitaire de France. J.R. acknowledges support from the European Commission through Marie Curie Actions.

Author information

Affiliations

  1. Laboratoire Kastler Brossel, Université Pierre et Marie Curie, 4 Place Jussieu, 75005 Paris, France

    • Jonathan Roslund
    • , Renné Medeiros de Araújo
    • , Shifeng Jiang
    • , Claude Fabre
    •  & Nicolas Treps

Authors

  1. Search for Jonathan Roslund in:

  2. Search for Renné Medeiros de Araújo in:

  3. Search for Shifeng Jiang in:

  4. Search for Claude Fabre in:

  5. Search for Nicolas Treps in:

Contributions

C.F. and N.T. developed and supervised the project. All authors designed the experiments. S.J. designed the optical cavity. J.R. and R.M.A. constructed the apparatus and performed the experiments. All authors contributed to the authorship of the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Nicolas Treps.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2013.340

Further reading