Abstract
Highly entangled quantum networks (cluster states) lie at the heart of recent approaches to quantum computing1,2. Yet the current approach for constructing optical quantum networks does so one node at a time3,4,5, which lacks scalability. Here, we demonstrate the single-step fabrication of a multimode quantum resource from the parametric downconversion of femtosecond-frequency combs. Ultrafast pulse shaping6 is employed to characterize the comb's spectral entanglement7,8. Each of the 511 possible bipartitions among ten spectral regions is shown to be entangled; furthermore, an eigenmode decomposition reveals that eight independent quantum channels9 (qumodes) are subsumed within the comb. This multicolour entanglement imports the classical concept of wavelength-division multiplexing to the quantum domain by playing upon frequency entanglement to enhance the capacity of quantum-information processing. The quantum frequency comb is easily addressable, robust with respect to decoherence and scalable, which renders it a unique tool for quantum information.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Two-colour high-purity Einstein-Podolsky-Rosen photonic state
Nature Communications Open Access 16 August 2022
-
Temporal distinguishability in Hong-Ou-Mandel interference for harnessing high-dimensional frequency entanglement
npj Quantum Information Open Access 07 December 2021
-
A squeezed quantum microcomb on a chip
Nature Communications Open Access 06 August 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Menicucci, N. C. et al. Universal quantum computation with continuous-variable cluster states. Phys. Rev. Lett. 97, 110501 (2006).
Weedbrook, C. et al. Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012).
Yukawa, M., Ukai, R., van Loock, P. & Furusawa, A. Experimental generation of four-mode continuous-variable cluster states. Phys. Rev. A 78, 012301 (2008).
Aoki, T. et al. Quantum error correction beyond qubits. Nature Phys. 5, 541–546 (2009).
Su, X. et al. Experimental preparation of eight-partite cluster state for photonic qumodes. Opt. Lett. 37, 5178–5180 (2012).
Weiner, A. M. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1929–1960 (2000).
Van Loock, P. & Furusawa, A. Detecting genuine multipartite continuous-variable entanglement. Phys. Rev. A 67, 052315 (2003).
Polycarpou, C., Cassemiro, K., Venturi, G., Zavatta, A. & Bellini, M. Adaptive detection of arbitrarily shaped ultrashort quantum light states. Phys. Rev. Lett. 109, 053602 (2012).
Braunstein, S. L. & van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005).
Menicucci, N. C., Flammia, S. T. & Pfister, O. One-way quantum computing in the optical frequency comb. Phys. Rev. Lett. 101, 130501 (2008).
Ukai, R. et al. Demonstration of unconditional one-way quantum computations for continuous variables. Phys. Rev. Lett. 106, 240504 (2011).
Pysher, M., Miwa, Y., Shahrokhshahi, R., Bloomer, R. & Pfister, O. Parallel generation of quadripartite cluster entanglement in the optical frequency comb. Phys. Rev. Lett. 107, 030505 (2011).
Pinel, O. et al. Generation and characterization of multimode quantum frequency combs. Phys. Rev. Lett. 108, 083601 (2012).
Grice, W. P., U'Ren, A. B. & Walmsley, I. A. Eliminating frequency and space–time correlations in multiphoton states. Phys. Rev. A 64, 063815 (2001).
Mosley, P. J. et al. Heralded generation of ultrafast single photons in pure quantum states. Phys. Rev. Lett. 100, 133601 (2008).
Patera, G., Treps, N., Fabre, C. & de Valcarcel, G. J. Quantum theory of synchronously pumped type I optical parametric oscillators: characterization of the squeezed supermodes. Eur. Phys. J. D 56, 123–140 (2010).
Hyllus, P. & Eisert, J. Optimal entanglement witnesses for continuous-variable systems. New J. Phys. 8, 51 (2006).
Duan, L-M., Giedke, G., Cirac, J. I. & Zoller, P. Inseparability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2722–2725 (2000).
Bowen, W. P., Schnabel, R., Lam, P. K. & Ralph, T. C. Experimental investigation of criteria for continuous variable entanglement. Phys. Rev. Lett. 90, 043601 (2003).
Simon, R. Peres–Horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2726–2729 (2000).
Treps, N., Delaubert, V., Maître, A., Courty, J. M. & Fabre, C. Quantum noise in multipixel image processing. Phys. Rev. A 71, 013820 (2005).
Opatrný, T., Korolkova, N. & Leuchs, G. Mode structure and photon number correlations in squeezed quantum pulses. Phys. Rev. A 66, 053813 (2002).
Braunstein, S. L. Squeezing as an irreducible resource. Phys. Rev. A 71, 055801 (2005).
Ferrini, G., Gazeau, J. P., Coudreau, T., Fabre, C. & Treps, N. Compact gaussian quantum computation by multi-pixel homodyne detection. New J. Phys. 15, 093015 (2013).
Armstrong, S. et al. Programmable multimode quantum networks. Nature Commun. 3, 1026 (2012).
Yokoyama, S. et al. Ultra-large-scale continuous-variable cluster states multiplexed in the time domain. Nature Photon. 7, 982–986 (2013).
Lamine, B., Fabre, C. & Treps, N. Quantum improvement of time transfer between remote clocks. Phys. Rev. Lett. 101, 123601 (2008).
Vaughan, J., Hornung, T., Feurer, T. & Nelson, K. Diffraction-based femtosecond pulse shaping with a two-dimensional spatial light modulator. Opt. Lett. 30, 323–325 (2005).
Acknowledgements
This work is supported by the French National Research Agency project Qualitime as well as the European Research Council starting grant Frecquam. C.F. is a member of the Institut Universitaire de France. J.R. acknowledges support from the European Commission through Marie Curie Actions.
Author information
Authors and Affiliations
Contributions
C.F. and N.T. developed and supervised the project. All authors designed the experiments. S.J. designed the optical cavity. J.R. and R.M.A. constructed the apparatus and performed the experiments. All authors contributed to the authorship of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 4563 kb)
Rights and permissions
About this article
Cite this article
Roslund, J., de Araújo, R., Jiang, S. et al. Wavelength-multiplexed quantum networks with ultrafast frequency combs. Nature Photon 8, 109–112 (2014). https://doi.org/10.1038/nphoton.2013.340
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2013.340
This article is cited by
-
Quantum anonymous voting with continuous-variable entanglement in optical frequency comb
Quantum Information Processing (2023)
-
Demonstration of fully-connected quantum communication network exploiting entangled sideband modes
Frontiers of Physics (2023)
-
Quantum optics of soliton microcombs
Nature Photonics (2022)
-
Nonlinear polariton parametric emission in an atomically thin semiconductor based microcavity
Nature Nanotechnology (2022)
-
Two-colour high-purity Einstein-Podolsky-Rosen photonic state
Nature Communications (2022)