Letter | Published:

On-chip quantum interference between silicon photon-pair sources

Nature Photonics volume 8, pages 104108 (2014) | Download Citation

Abstract

Large-scale integrated quantum photonic technologies1,2 will require on-chip integration of identical photon sources with reconfigurable waveguide circuits. Relatively complex quantum circuits have been demonstrated already1,2,3,4,5,6,7, but few studies acknowledge the pressing need to integrate photon sources and waveguide circuits together on-chip8,9. A key step towards such large-scale quantum technologies is the integration of just two individual photon sources within a waveguide circuit, and the demonstration of high-visibility quantum interference between them. Here, we report a silicon-on-insulator device that combines two four-wave mixing sources in an interferometer with a reconfigurable phase shifter. We configured the device to create and manipulate two-colour (non-degenerate) or same-colour (degenerate) path-entangled or path-unentangled photon pairs. We observed up to 100.0 ± 0.4% visibility quantum interference on-chip, and up to 95 ± 4% off-chip. Our device removes the need for external photon sources, provides a path to increasing the complexity of quantum photonic circuits and is a first step towards fully integrated quantum technologies.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Photonic quantum technologies. Nature Photon. 3, 687–695 (2009).

  2. 2.

    et al. On the genesis and evolution of integrated quantum optics. Las. Photon. Rev. 1, 115–143 (2012).

  3. 3.

    et al. Quantum walks of correlated photons. Science 329, 1500–1503 (2010).

  4. 4.

    et al. Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit. Nature Photon. 6, 45–49 (2012).

  5. 5.

    et al. Multiphoton quantum interference in a multiport integrated photonic device. Nature Commun. 4, 1356 (2013).

  6. 6.

    et al. Experimental boson sampling. Nature Photon. 7, 540–544 (2013).

  7. 7.

    et al. Anderson localization of entangled photons in an integrated quantum walk. Nature Photon. 7, 322–328 (2013).

  8. 8.

    et al. A monolithically integrated polarization entangled photon pair source on a silicon chip. Sci. Rep. 2, 817 (2012).

  9. 9.

    , , , & A quantum relay chip based on telecommunication integrated optics technology. New J. Phys. 14, 025002 (2012).

  10. 10.

    The past, present, and future of silicon photonics. J. Sel. Top. Quant. Electron. 12, 1678–1687 (2006).

  11. 11.

    , , , & Large-scale nanophotonic phased array. Nature 493, 195–199 (2013).

  12. 12.

    , , & Silicon optical modulators. Nature Photon. 4, 518–526 (2010).

  13. 13.

    et al. Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits. New J. Phys. 14, 045003 (2012).

  14. 14.

    et al. Generation of correlated photons in nanoscale silicon waveguides. Opt. Express 14, 12388–12393 (2006).

  15. 15.

    et al. Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators. Opt. Express 17, 16558–16570 (2009).

  16. 16.

    et al. Generation of polarization entangled photon pairs using silicon wire waveguide. Opt. Express 16, 5721–5727 (2008).

  17. 17.

    et al. Ultra-low power generation of twin photons in a compact silicon ring resonator. Opt. Express 20, 23100–23107 (2012).

  18. 18.

    et al. Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide. Opt. Lett. 36, 3413–3415 (2011).

  19. 19.

    , Rangel-Rojo, R., Evans, R. & Camacho-López, S. Ultrabroadband photon pair preparation by spontaneous four-wave mixing in a dispersion-engineered optical fiber. Phys. Rev. A 78, 043827 (2008).

  20. 20.

    , & Deterministic quantum splitter based on time-reversed Hong–Ou–Mandel interference. Phys. Rev. A 76, 031804(R) (2007).

  21. 21.

    , , & Manipulation of multiphoton entanglement in waveguide quantum circuits. Nature Photon. 3, 346–350 (2009).

  22. 22.

    & Two-color photons and nonlocality in fourth-order interference. Phys. Rev. A 41, 5139–5146 (1990).

  23. 23.

    , , , & Discrete tunable color entanglement. Phys. Rev. Lett. 103, 253601 (2009).

  24. 24.

    et al. Can two-photon interference be considered the interference of two photons? Phys. Rev. Lett. 77, 1917–1920 (1996).

  25. 25.

    , & Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

  26. 26.

    & Observation of spatial quantum beating with separated photodetectors. Phys. Rev. Lett. 61, 54–57 (1988).

  27. 27.

    et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).

  28. 28.

    et al. High-fidelity operation of quantum photonic circuits. Appl. Phys. Lett. 97, 211109 (2010).

  29. 29.

    et al. Stimulated and spontaneous four-wave mixing in silicon-on-insulator coupled photonic wire nano-cavities. Appl. Phys. Lett. 103, 031117 (2013).

  30. 30.

    et al. Observation of eight-photon entanglement. Nature Photon. 6, 225–228 (2012).

  31. 31.

    et al. Experimental demonstration of topological error correction. Nature 482, 489–494 (2012).

  32. 32.

    , , , & Experimental generation of single photons via active multiplexing. Phys. Rev. A 83, 043814 (2011).

  33. 33.

    & Efficient generation of single and entangled photons on a silicon photonic integrated chip. Phys. Rev. A 84, 052326 (2011).

  34. 34.

    , , , & Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist. Electron. Lett. 44, 115–116 (2008).

  35. 35.

    et al. A compact and low-loss MMI coupler fabricated with CMOS technology. IEEE Photon. J. 4, 2272–2277 (2012).

Download references

Acknowledgements

We thank A. Politi for useful discussions, and F. Melloti for experimental assistance. This work was supported by the Engineering and Physical Science Research Council (UK), the European Research Council, the Bristol Centre for Nanoscience and Quantum Information, the European FP7 project QUANTIP and the European FP7 project BBOI. J.W.S. acknowledges support from the Natural Sciences and Engineering Research Council of Canada. R.H.H. acknowledges a Royal Society University Research Fellowship. V.Z. acknowledges support from the Dutch Foundation for Fundamental Research on Matter. G.D.M. acknowledges the FP7 Marie Curie International Incoming Fellowship scheme. J.L.O'B. acknowledges a Royal Society Wolfson Merit Award and a Royal Academy of Engineering Chair in Emerging Technologies. M.G.Th. acknowledges support from the Toshiba Research Fellowship scheme.

Author information

Affiliations

  1. Centre for Quantum Photonics, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol BS8 1UB, UK

    • J. W. Silverstone
    • , D. Bonneau
    • , G. D. Marshall
    • , J. G. Rarity
    • , J. L. O'Brien
    •  & M. G. Thompson
  2. Corporate Research & Development Center, Toshiba Corporation, 1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki 212-8582, Japan

    • K. Ohira
    • , N. Suzuki
    • , H. Yoshida
    • , N. Iizuka
    •  & M. Ezaki
  3. E. L. Ginzton Laboratory, Stanford University, Stanford 94305, USA

    • C. M. Natarajan
  4. School of Engineering, University of Glasgow, James Watt South Building, Glasgow G12 8QQ, UK

    • M. G. Tanner
    •  & R. H. Hadfield
  5. Kavli Institute of Nanoscience, TU Delft, Lorentzweg 1, 2628CJ Delft, The Netherlands

    • V. Zwiller

Authors

  1. Search for J. W. Silverstone in:

  2. Search for D. Bonneau in:

  3. Search for K. Ohira in:

  4. Search for N. Suzuki in:

  5. Search for H. Yoshida in:

  6. Search for N. Iizuka in:

  7. Search for M. Ezaki in:

  8. Search for C. M. Natarajan in:

  9. Search for M. G. Tanner in:

  10. Search for R. H. Hadfield in:

  11. Search for V. Zwiller in:

  12. Search for G. D. Marshall in:

  13. Search for J. G. Rarity in:

  14. Search for J. L. O'Brien in:

  15. Search for M. G. Thompson in:

Contributions

J.W.S. and D.B. contributed equally to this work. J.W.S., D.B., J.G.R., J.L.O'B. and M.G.Th. conceived and designed the experiments. J.W.S., D.B. and M.G.Th. analysed the data. K.O., N.S., H.Y., N.I. and M.E. fabricated the device. R.H.H., V.Z., C.M.N. and M.G.Ta. built the single-photon detector system. J.W.S., D.B. and G.D.M. performed the experiments. J.W.S., D.B., G.D.M., J.G.R., J.L.O'B. and M.G.Th. wrote the manuscript.

Competing interests

J.W.S., D.B., J.L.O'B. and M.G.Th. declare UK patent application number 1302895.6.

Corresponding author

Correspondence to M. G. Thompson.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2013.339

Further reading