Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

On-chip quantum interference between silicon photon-pair sources

Abstract

Large-scale integrated quantum photonic technologies1,2 will require on-chip integration of identical photon sources with reconfigurable waveguide circuits. Relatively complex quantum circuits have been demonstrated already1,2,3,4,5,6,7, but few studies acknowledge the pressing need to integrate photon sources and waveguide circuits together on-chip8,9. A key step towards such large-scale quantum technologies is the integration of just two individual photon sources within a waveguide circuit, and the demonstration of high-visibility quantum interference between them. Here, we report a silicon-on-insulator device that combines two four-wave mixing sources in an interferometer with a reconfigurable phase shifter. We configured the device to create and manipulate two-colour (non-degenerate) or same-colour (degenerate) path-entangled or path-unentangled photon pairs. We observed up to 100.0 ± 0.4% visibility quantum interference on-chip, and up to 95 ± 4% off-chip. Our device removes the need for external photon sources, provides a path to increasing the complexity of quantum photonic circuits and is a first step towards fully integrated quantum technologies.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Mode of operation, mechanism of photon-pair generation and physical structure of the device.
Figure 2: On-chip quantum and classical interference measurements, varying the internal phase φ.
Figure 3: Off-chip HOM quantum interference measurements of |Ψsplit〉.

References

  1. O'Brien, J. L., Furusawa, A. & Vuckovic, J. Photonic quantum technologies. Nature Photon. 3, 687–695 (2009).

    ADS  Article  Google Scholar 

  2. Tanzilli, S. et al. On the genesis and evolution of integrated quantum optics. Las. Photon. Rev. 1, 115–143 (2012).

    ADS  Article  Google Scholar 

  3. Peruzzo, A. et al. Quantum walks of correlated photons. Science 329, 1500–1503 (2010).

    ADS  Article  Google Scholar 

  4. Shadbolt, P. J. et al. Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit. Nature Photon. 6, 45–49 (2012).

    ADS  Article  Google Scholar 

  5. Metcalf, B. J. et al. Multiphoton quantum interference in a multiport integrated photonic device. Nature Commun. 4, 1356 (2013).

    ADS  Article  Google Scholar 

  6. Tillmann, M. et al. Experimental boson sampling. Nature Photon. 7, 540–544 (2013).

    ADS  Article  Google Scholar 

  7. Crespi, A. et al. Anderson localization of entangled photons in an integrated quantum walk. Nature Photon. 7, 322–328 (2013).

    ADS  Article  Google Scholar 

  8. Matsuda, N. et al. A monolithically integrated polarization entangled photon pair source on a silicon chip. Sci. Rep. 2, 817 (2012).

    Article  Google Scholar 

  9. Martin, A., Alibart, O., DeMicheli, M. P., Ostrowsky, D. B. & Tanzilli, S. A quantum relay chip based on telecommunication integrated optics technology. New J. Phys. 14, 025002 (2012).

    ADS  Article  Google Scholar 

  10. Soref, R. The past, present, and future of silicon photonics. J. Sel. Top. Quant. Electron. 12, 1678–1687 (2006).

    Article  Google Scholar 

  11. Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E. S. & Watts, M. R. Large-scale nanophotonic phased array. Nature 493, 195–199 (2013).

    ADS  Article  Google Scholar 

  12. Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nature Photon. 4, 518–526 (2010).

    ADS  Article  Google Scholar 

  13. Bonneau, D. et al. Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits. New J. Phys. 14, 045003 (2012).

    ADS  Article  Google Scholar 

  14. Sharping, J. E. et al. Generation of correlated photons in nanoscale silicon waveguides. Opt. Express 14, 12388–12393 (2006).

    ADS  Article  Google Scholar 

  15. Clemmen, S. et al. Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators. Opt. Express 17, 16558–16570 (2009).

    ADS  Article  Google Scholar 

  16. Takesue, H. et al. Generation of polarization entangled photon pairs using silicon wire waveguide. Opt. Express 16, 5721–5727 (2008).

    ADS  Article  Google Scholar 

  17. Azzini, S. et al. Ultra-low power generation of twin photons in a compact silicon ring resonator. Opt. Express 20, 23100–23107 (2012).

    ADS  Article  Google Scholar 

  18. Xiong, C. et al. Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide. Opt. Lett. 36, 3413–3415 (2011).

    ADS  Article  Google Scholar 

  19. Garay-Palmett, K., U'ren, A., Rangel-Rojo, R., Evans, R. & Camacho-López, S. Ultrabroadband photon pair preparation by spontaneous four-wave mixing in a dispersion-engineered optical fiber. Phys. Rev. A 78, 043827 (2008).

    ADS  Article  Google Scholar 

  20. Chen, J., Lee, K. F. & Kumar, P. Deterministic quantum splitter based on time-reversed Hong–Ou–Mandel interference. Phys. Rev. A 76, 031804(R) (2007).

    ADS  Article  Google Scholar 

  21. Matthews, J. C. F., Politi, A., Stefanov, A. & O'Brien, J. L. Manipulation of multiphoton entanglement in waveguide quantum circuits. Nature Photon. 3, 346–350 (2009).

    ADS  Article  Google Scholar 

  22. Rarity, J. G. & Tapster, P. R. Two-color photons and nonlocality in fourth-order interference. Phys. Rev. A 41, 5139–5146 (1990).

    ADS  Article  Google Scholar 

  23. Ramelow, S., Ratschbacher, L., Fedrizzi, A., Langford, N. K. & Zeilinger, A. Discrete tunable color entanglement. Phys. Rev. Lett. 103, 253601 (2009).

    ADS  Article  Google Scholar 

  24. Pittman, T. et al. Can two-photon interference be considered the interference of two photons? Phys. Rev. Lett. 77, 1917–1920 (1996).

    ADS  Article  Google Scholar 

  25. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    ADS  Article  Google Scholar 

  26. Ou, Z. Y. & Mandel, L. Observation of spatial quantum beating with separated photodetectors. Phys. Rev. Lett. 61, 54–57 (1988).

    ADS  Article  Google Scholar 

  27. Pan, J-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).

    ADS  Article  Google Scholar 

  28. Laing, A. et al. High-fidelity operation of quantum photonic circuits. Appl. Phys. Lett. 97, 211109 (2010).

    ADS  Article  Google Scholar 

  29. Azzini, S. et al. Stimulated and spontaneous four-wave mixing in silicon-on-insulator coupled photonic wire nano-cavities. Appl. Phys. Lett. 103, 031117 (2013).

    ADS  Article  Google Scholar 

  30. Yao, X.-C. et al. Observation of eight-photon entanglement. Nature Photon. 6, 225–228 (2012).

    ADS  Article  Google Scholar 

  31. Yao, X.-C. et al. Experimental demonstration of topological error correction. Nature 482, 489–494 (2012).

    ADS  Article  Google Scholar 

  32. Ma, X-S., Zotter, S., Kofler, J., Jennewein, T. & Zeilinger, A. Experimental generation of single photons via active multiplexing. Phys. Rev. A 83, 043814 (2011).

    ADS  Article  Google Scholar 

  33. Mower, J. & Englund, D. Efficient generation of single and entangled photons on a silicon photonic integrated chip. Phys. Rev. A 84, 052326 (2011).

    ADS  Article  Google Scholar 

  34. Gnan, M., Thoms, S., Macintyre, D., De La Rue, R. M. & Sorel, M. Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist. Electron. Lett. 44, 115–116 (2008).

    Article  Google Scholar 

  35. Sheng, Z. et al. A compact and low-loss MMI coupler fabricated with CMOS technology. IEEE Photon. J. 4, 2272–2277 (2012).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank A. Politi for useful discussions, and F. Melloti for experimental assistance. This work was supported by the Engineering and Physical Science Research Council (UK), the European Research Council, the Bristol Centre for Nanoscience and Quantum Information, the European FP7 project QUANTIP and the European FP7 project BBOI. J.W.S. acknowledges support from the Natural Sciences and Engineering Research Council of Canada. R.H.H. acknowledges a Royal Society University Research Fellowship. V.Z. acknowledges support from the Dutch Foundation for Fundamental Research on Matter. G.D.M. acknowledges the FP7 Marie Curie International Incoming Fellowship scheme. J.L.O'B. acknowledges a Royal Society Wolfson Merit Award and a Royal Academy of Engineering Chair in Emerging Technologies. M.G.Th. acknowledges support from the Toshiba Research Fellowship scheme.

Author information

Authors and Affiliations

Authors

Contributions

J.W.S. and D.B. contributed equally to this work. J.W.S., D.B., J.G.R., J.L.O'B. and M.G.Th. conceived and designed the experiments. J.W.S., D.B. and M.G.Th. analysed the data. K.O., N.S., H.Y., N.I. and M.E. fabricated the device. R.H.H., V.Z., C.M.N. and M.G.Ta. built the single-photon detector system. J.W.S., D.B. and G.D.M. performed the experiments. J.W.S., D.B., G.D.M., J.G.R., J.L.O'B. and M.G.Th. wrote the manuscript.

Corresponding author

Correspondence to M. G. Thompson.

Ethics declarations

Competing interests

J.W.S., D.B., J.L.O'B. and M.G.Th. declare UK patent application number 1302895.6.

Supplementary information

Supplementary information

Supplementary information (PDF 718 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Silverstone, J., Bonneau, D., Ohira, K. et al. On-chip quantum interference between silicon photon-pair sources. Nature Photon 8, 104–108 (2014). https://doi.org/10.1038/nphoton.2013.339

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.339

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing