Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Exploiting shot noise correlations in the photodetection of ultrashort optical pulse trains

Abstract

Photocurrent shot noise represents the fundamental quantum limit for amplitude, phase and timing measurements of optical signals. It is generally assumed that non-classical states of light must be employed to alter the standard, time-invariant shot noise detection limit. However, in the detection of periodic signals, correlations in the shot noise spectrum can impact the quantum limit of detection. Here, we show how these correlations can be exploited to improve shot noise-limited optical pulse timing measurements by several orders of magnitude. This has allowed us to realize a photodetected pulse train timing noise floor at an unprecedented 25 zs Hz−1/2 (corresponding phase noise of −179 dBc Hz−1 on a 10 GHz carrier), 5 dB below the level predicted by the accepted time-invariant shot noise behaviour. This new understanding of the shot noise of time-varying signals can be used to greatly improve photonic systems, affecting a wide range of communication1, navigation2 and precision measurement3 applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fluctuations and shot noise in the time domain.
Figure 2: Shot noise in the frequency domain.
Figure 3: Phase noise prediction and measurement of a photonically generated 10 GHz signal.

Similar content being viewed by others

References

  1. Armada, A. G. Understanding the effects of phase noise in orthogonal frequency division multiplexing (OFDM). IEEE Trans. Broadcast. 47, 153–159 (2001).

    Article  ADS  Google Scholar 

  2. Scheer, J. A. & Kurtz, J. L. Coherent Radar Performance Estimation (Artech House, 1993).

    Google Scholar 

  3. Santarelli, G. et al. Frequency stability degradation of an oscillator slaved to a periodically interrogated atomic resonator. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 887–894 (1998).

    Article  Google Scholar 

  4. Yariv, A. in Optical Electronics in Modern Communications 5th edn, Ch. 10 (Oxford Univ. Press, 1997).

    Google Scholar 

  5. Boyd, R. W. in Radiometry and the Detection of Optical Radiation Ch. 4 (Wiley, 1983).

    Google Scholar 

  6. Walls, D. F. Squeezed states of light. Nature 306, 141–146 (1983).

    Article  ADS  Google Scholar 

  7. Niebauer, T. M., Schilling, R., Danzmann, K., Rudiger, A. & Winkler, W. Nonstationary shot noise and its effect on the sensitivity of interferometers. Phys. Rev. A 43, 5022–5029 (1991).

    Article  ADS  Google Scholar 

  8. Bruyevich, A. N. Fluctuations in autooscillators for periodically nonstationary shot noise. Telecomm. Radio Eng. 23, 91–96 (1968).

    Google Scholar 

  9. Gray, M. B., Stevenson, A. J., Bachor, H. A. & McClelland, D. E. Harmonic demodulation of nonstationary shot noise. Opt. Lett. 18, 759–761 (1993).

    Article  ADS  Google Scholar 

  10. Meers, B. J. & Strain, K. A. Modulation, signal, and quantum noise in interferometers. Phys. Rev. A 44, 4693–4703 (1991).

    Article  ADS  Google Scholar 

  11. Winzer, P. J. Shot-noise formula for time-varying photon rates: a general derivation. J. Opt. Soc. Am. B 14, 2424–2429 (1997).

    Article  ADS  Google Scholar 

  12. Rakhmanov, M. Demodulation of intensity and shot noise in the optical heterodyne detection of laser interferometers for gravitational waves. Appl. Opt. 40, 6596–6605 (2001).

    Article  ADS  Google Scholar 

  13. von der Linde, D. Characterization of the noise in continuously operating mode-locked lasers. Appl. Phys. B 39, 201–217 (1986).

    Article  ADS  Google Scholar 

  14. Paschotta, R. Noise of mode-locked lasers (Part II): timing jitter and other fluctuations. Appl. Phys. B 79, 163–173 (2004).

    Article  Google Scholar 

  15. Characterization of Clocks and Oscillators: NIST Technical Note 1337 (US GPO, 1990).

  16. Bachor, H. A. & Manson, P. J. Practical implications of quantum noise. J. Mod. Opt. 37, 1727–1740 (1990).

    Article  ADS  Google Scholar 

  17. Henry, C. H. & Kazarinov, R. F. Quantum noise in photonics. Rev. Mod. Phys. 68, 801–853 (1996).

    Article  ADS  Google Scholar 

  18. Li, Z., Pan, H. P., Chen, H., Beling, A. & Campbell, J. C. High-saturation-current modified uni-traveling-carrier photodiode with cliff layer. IEEE J. Quantum Electron. 46, 626–632 (2010).

    Article  ADS  Google Scholar 

  19. Hati, A., Howe, D. A., Walls, F. L. & Walker, D. K. Merits of PM noise measurement over noise figure: a study at microwave frequencies. IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 53, 1889–1894 (2006).

    Article  Google Scholar 

  20. Eliyahu, D., Seidel, D. & Maleki, L. in Proceedings of the IEEE International Frequency Control Symposium 811–814 (IEEE, 2008).

    Google Scholar 

  21. Fortier, T. M. et al. Generation of ultrastable microwaves via optical frequency division. Nature Photon. 5, 425–429 (2011).

    Article  ADS  Google Scholar 

  22. Haboucha, A. et al. Optical-fiber pulse rate multiplier for ultralow phase-noise signal generation. Opt. Lett. 36, 3654–3656 (2011).

    Article  ADS  Google Scholar 

  23. Jiang, H. et al. in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2012).

    Google Scholar 

  24. Li, Z. et al. High-power high-linearity flip-chip bonded modified uni-traveling carrier photodiode. Opt. Express 19, 385–390 (2011).

    Article  ADS  Google Scholar 

  25. Fortier, T. M., Bartels, A. & Diddams, S. A. Octave-spanning Ti:sapphire laser with a repetition rate >1 GHz for optical frequency measurements and comparisons. Opt. Lett. 31, 1011–1013 (2006).

    Article  ADS  Google Scholar 

  26. Jiang, H. F., Taylor, J., Quinlan, F., Fortier, T. & Diddams, S. A. Noise floor reduction of an Er:fiber laser-based photonic microwave generator. IEEE Photon. J. 3, 1004–1012 (2011).

    Article  ADS  Google Scholar 

  27. Taylor, J. et al. Characterization of power-to-phase conversion in high-speed P-I-N photodiodes. IEEE Photon. J. 3, 140–151 (2011).

    Article  ADS  Google Scholar 

  28. Zhang, W. et al. Amplitude to phase conversion of InGaAs pin photo-diodes for femtosecond lasers microwave signal generation. Appl. Phys. B 106, 301–308 (2012).

    Article  ADS  Google Scholar 

  29. Fortier, T. M. et al. Sub-femtosecond absolute timing jitter with a 10 GHz hybrid photonic–microwave oscillator. Appl. Phys. Lett. 100, 231111 (2012).

    Article  ADS  Google Scholar 

  30. Walls, W. F. in Proceedings of the IEEE Frequency Control Symposium 257–261 (IEEE, 1992).

    Google Scholar 

Download references

Acknowledgements

The authors thank P. Winzer, S. Papp, N. Newbury, E. Ivanov, R. Mhaskar, A. Ludlow and J. Bergquist for useful discussions and comments on this manuscript. This work was supported by the National Institute of Standards and Technology and in part by the Defense Advanced Research Projects Agency. It is a contribution of an agency of the US Government and is not subject to copyright in the USA.

Author information

Authors and Affiliations

Authors

Contributions

F.Q., T.M.F., H.J. and S.A.D. developed the model. F.Q., T.M.F., A.H., C.N. and S.A.D. performed the measurements. Y.F. and J.C. designed, modelled and fabricated the photodetectors. F.Q., T.M.F. and S.A.D. analysed the data and prepared the manuscript.

Corresponding authors

Correspondence to F. Quinlan or S. A. Diddams.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1795 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quinlan, F., Fortier, T., Jiang, H. et al. Exploiting shot noise correlations in the photodetection of ultrashort optical pulse trains. Nature Photon 7, 290–293 (2013). https://doi.org/10.1038/nphoton.2013.33

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.33

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing