Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Single-nanowire solar cells beyond the Shockley–Queisser limit

Abstract

Light management is of great importance in photovoltaic cells, as it determines the fraction of incident light entering the device. An optimal p–n junction combined with optimal light absorption can lead to a solar cell efficiency above the Shockley–Queisser limit. Here, we show how this is possible by studying photocurrent generation for a single core–shell p–i–n junction GaAs nanowire solar cell grown on a silicon substrate. At 1 sun illumination, a short-circuit current of 180 mA cm–2 is obtained, which is more than one order of magnitude higher than that predicted from the Lambert–Beer law. The enhanced light absorption is shown to be due to a light-concentrating property of the standing nanowire, as shown by photocurrent maps of the device. The results imply new limits for the maximum efficiency obtainable with IIIV based nanowire solar cells under 1 sun illumination.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrical characterization of a single nanowire solar cell (device 1).
Figure 2: Optical simulations of a single nanowire solar cell.
Figure 3: Optical characterization of a single nanowire solar cell (device 2).

References

  1. Tian, B. Z. et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885–888 (2007).

    Article  ADS  Google Scholar 

  2. Law, M., Greene, L. E., Johnson, J. C., Saykally, R. & Yang, P. D. Nanowire dye-sensitized solar cells. Nature Mater. 4, 455–459 (2005).

    Article  ADS  Google Scholar 

  3. Kayes, B. M., Atwater, H. A. & Lewis, N. S. Comparison of the device physics principles of planar and radial pn junction nanorod solar cells. J. Appl. Phys. 97, 114302 (2005).

    Article  ADS  Google Scholar 

  4. Spurgeon, J. M. et al. Flexible, polymer-supported, Si wire array photoelectrodes. Adv. Mater. 22, 3277–3281 (2010).

    Article  Google Scholar 

  5. Fan, Z. et al. Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nature Mater. 8, 648–653 (2009).

    Article  ADS  Google Scholar 

  6. Kempa, T. J. et al. Single and tandem axial p–i–n nanowire photovoltaic devices. Nano Lett. 8, 3456–3460 (2008).

    Article  ADS  Google Scholar 

  7. Chuang, L. C. et al. Critical diameter for IIIV nanowires grown on lattice-mismatched substrates. Appl. Phys. Lett. 90, 043115 (2007).

    Article  ADS  Google Scholar 

  8. Glas, F. Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires. Phys. Rev. B 74, 121302 (2006).

    Article  ADS  Google Scholar 

  9. Tsakalakos, L. et al. Silicon nanowire solar cells. Appl. Phys. Lett. 91, 233117 (2007).

    Article  ADS  Google Scholar 

  10. Goto, H. et al. Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy. Appl. Phys. Express 2, 035004 (2009).

    Article  ADS  Google Scholar 

  11. Garnett, E. C. & Yang, P. Silicon nanowire radial p–n junction solar cells. J. Am. Chem. Soc. 130, 9224–9225 (2008).

    Article  Google Scholar 

  12. Wallentin, J. et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 339, 1057–1060 (2013).

    Article  Google Scholar 

  13. Tian, B. Z. & Lieber, C. M. Design, synthesis, and characterization of novel nanowire structures for photovoltaics and intracellular probes. Pure Appl. Chem. 83, 2153–2169 (2011).

    Article  Google Scholar 

  14. Dalmau-Mallorqui, A., Epple, F. M., Fan, D., Demichel, O. & Fontcuberta i Morral, A. Effect of the pn junction engineering on Si microwire-array solar cells. Phys. Status Solidi 209, 1588–1591 (2012).

    Article  ADS  Google Scholar 

  15. Tsakalakos, L. et al. Strong broadband optical absorption in silicon nanowire films. J. Nanophot. 1, 013552 (2007).

    Article  Google Scholar 

  16. Zhu, J. et al. Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett. 9, 279–282 (2009).

    Article  ADS  Google Scholar 

  17. Mariani, G. et al. Patterned radial GaAs nanopillar solar cells. Nano Lett. 11, 2490–2494 (2011).

    Article  ADS  Google Scholar 

  18. Muskens, O. L., Gomez-Rivas, J., Algra, R. E., Bakkers, E. P. A. M. & Lagendijk, A. Design of light scattering in nanowire materials for photovoltaic applications. Nano Lett. 8, 2638–2642 (2008).

    Article  ADS  Google Scholar 

  19. Kosten, E. D., Warren, E. L. & Atwater H. A. Ray optical light trapping in silicon microwires: exceeding the 2n2 intensity limit. Opt. Express 19, 3316–3331 (2011).

    Article  ADS  Google Scholar 

  20. Callahan, D. M., Munday, J. N. & Atwater H. A. Solar cell light trapping beyond the ray optic limit. Nano Lett. 12, 214–218 (2012).

    Article  ADS  Google Scholar 

  21. Kelzenberg, M. D. et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nature Mater. 9, 239–244 (2010).

    Article  ADS  Google Scholar 

  22. Diedenhofen, S. et al. Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires. ACS Nano 5, 2316–2323 (2011).

    Article  Google Scholar 

  23. Kwanyong, S. et al. Multicolored vertical silicon nanowires. Nano Lett. 11, 1851–1856 (2011).

    Article  Google Scholar 

  24. Van Vugt, L. L., Zhang, B., Piccione, B., Spector, A. A. & Agarwal, R. Size-dependent waveguide dispersion in nanowire optical cavities: slowed light and dispersionless guiding. Nano Lett. 9, 1684–1688 (2009).

    Article  ADS  Google Scholar 

  25. Cao, L. et al. Engineering light absorption in semiconductor nanowire devices. Nature Mater. 8, 643–647 (2009).

    Article  ADS  Google Scholar 

  26. Brönstrup, G. et al. A precise optical determination of nanoscale diameters of semiconductor nanowires. Nanotechnology 22, 385201 (2011).

    Article  Google Scholar 

  27. Heiss, M. & Fontcuberta i Morral A. Fundamental limits in the external quantum efficiency of single nanowire solar cells. Appl. Phys. Lett. 99, 263102 (2011).

    Article  ADS  Google Scholar 

  28. Kempa, T. et al. Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics. Proc. Natl Acad. Sci. USA 109, 1407–1412 (2011).

    Article  ADS  Google Scholar 

  29. Nelson, J. The Physics of Solar Cells (Imperial College, 2003).

    Book  Google Scholar 

  30. Oskooi, A. F. et al. MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method. Comp. Phys. Comm. 181, 687–702 (2010).

    Article  ADS  Google Scholar 

  31. Kupec, J. & Witzigmann, B. Dispersion, wave propagation and efficiency analysis of nanowire solar cells. Opt. Express 17, 10399–10410 (2009).

    Article  ADS  Google Scholar 

  32. Cao, L. Y. et al. Semiconductor nanowire optical antenna solar absorbers. Nano Lett. 10, 439–445 (2010).

    Article  ADS  Google Scholar 

  33. Leatherdale, C. A., Woo, W. K., Mikulec, F. V. & Bawendi, M. G. On the absorption cross section of CdSe nanocrystal quantum dots. J. Phys. Chem. B 106, 7619–7622 (2002).

    Article  Google Scholar 

  34. Henry, C. H. Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. J. Appl. Phys. 51, 4494–4500 (1980).

    Article  ADS  Google Scholar 

  35. Araújo, G. L. & Marti, A. Absolute limiting efficiencies for photovoltaic energy-conversion. Solar Ener. Mater. Solar Cells 33, 213–240 (1994).

    Article  Google Scholar 

  36. Polman, A. & Atwater H. A. Photonic design principles for ultrahigh-efficiency photovoltaics. Nature Mater. 11, 174–177 (2012).

    Article  ADS  Google Scholar 

  37. Kempa, T. et al. Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics. Proc. Natl Acad. Sci. USA 109, 1407–1412 (2012).

    Article  ADS  Google Scholar 

  38. Campbell, P. & Green, M. A. The limiting efficiency of silicon solar cells under concentrated sunlight. IEEE Trans. Electron. Device Lett. 33, 234–239 (1986).

    Article  ADS  Google Scholar 

  39. Nelson, J. The Physics of Solar Cells (Imperial College Press, 2003).

    Book  Google Scholar 

  40. Luque, A. The confinement of light in solar cells. Solar Ener. Mater. 23, 152–163 (1991).

    Article  Google Scholar 

  41. Yablonovitch, E. & Cody, G. D. Intensity enhancement in textured optical sheets for solar cells. IEEE Trans. Electron. Device Lett. 29, 300–305 (1982).

    Article  ADS  Google Scholar 

  42. Shockley, W. & Queisser H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Article  ADS  Google Scholar 

  43. Uccelli, E. et al. Three-dimensional twinning of self-catalyzed GaAs nanowires on Si substrates. Nano Lett. 11, 3827–3832 (2011).

    Article  ADS  Google Scholar 

  44. Krogstrup, P. et al. Structural phase control in self-catalyzed growth of GaAs nanowires on silicon (111). Nano Lett. 10, 4475–4482 (2010).

    Article  ADS  Google Scholar 

  45. Casadei, A. et al. Doping incorporation paths in catalyst-free Be-doped GaAs nanowires. Appl. Phys. Lett. 102, 013117 (2013).

    Article  ADS  Google Scholar 

  46. Colombo, C., Heiß, M., Graetzel, M. & Fontcuberta i Morral, A. Gallium arsenide p–i–n radial structures for photovoltaic applications. Appl. Phys. Lett. 94, 173108 (2009).

    Article  ADS  Google Scholar 

  47. Zhao, J. et al. 19.8% efficient ‘honeycomb’ textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl. Phys. Lett. 73, 1991–1993 (1998).

    Article  ADS  Google Scholar 

  48. Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency tables (version 41). Prog. Photovolt. 21, 1–11 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the ERC starting grant UpCon and by SNF (project nos 137648, 143908) and NCCR-QSIT. A.F.i.M. thanks STI for the 2011 end-of-year fund for MiBoots robots used in the scanning photocurrent experiment. A.F.i.M. and M.H. thank A. Dalmau-Mallorqui and F.M. Epple for experimental support. The authors also thank C.B. Sørensen and M.H. Madsen for assistance with MBE growth. This work was supported by the Danish National Advanced Technology Foundation (project 022-2009-1), a University of Copenhagen Center of Excellence, and by the UNIK Synthetic Biology project.

Author information

Authors and Affiliations

Authors

Contributions

P.K. grew the nanowire p–n junctions. H.I.J. performed IV characterization and fabricated the device, with help from J.V.H. and M.A. M.H. and O.D. performed the FDTD calculations. M.H. realized the photocurrent mappings and the external quantum efficiency measurements. A.F.i.M. and P.K. conceived and designed the experiments. A.F.i.M., J.N. and M.A. supervised the project. A.F.i.M., H.I.J., P.K. and M.H. composed the figures and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Peter Krogstrup or Anna Fontcuberta i Morral.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1097 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Krogstrup, P., Jørgensen, H., Heiss, M. et al. Single-nanowire solar cells beyond the Shockley–Queisser limit. Nature Photon 7, 306–310 (2013). https://doi.org/10.1038/nphoton.2013.32

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.32

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing