Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Triplet–triplet exciton dynamics in single-walled carbon nanotubes

Abstract

Semiconducting single-walled carbon nanotubes (SWNTs) are considered as building blocks for novel optoelectronic and photonic devices. Energy transport, dissipation and nonlinear optical properties of such devices depend critically on the dynamics of singlet and triplet excitons. However, little is known about triplet excitons in SWNTs despite their important role in photovoltaic, photoelectric and other applications. We present pump–probe and spin-sensitive photoluminescence studies of semiconducting SWNTs that allow the determination of the quantum yield of triplet formation (5 ± 2%), the triplet lifetime (30 ± 10 µs) and the triplet exciton size (0.65 nm). Triplet–triplet annihilation is also found to induce delayed fluorescence. The power-law decay of pump–probe and time-resolved photoluminescence signals is characteristic of diffusion-limited annihilation in one-dimensional systems and allows an estimation of the triplet diffusion constant of 0.1 cm2 s−1. This work suggests that exciton annihilation in SWNTs is reduced by one-dimensional confinement of diffusive exciton motion.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Photoluminescence decay from SWNTs.
Figure 2: DF from triplet–triplet annihilation.
Figure 3: ODMR spectra.
Figure 4: ODMR modulation frequency and excitation intensity dependence.

References

  1. 1

    Hofmann, M. S. et al. Bright, long-lived and coherent excitons in carbon nanotube quantum dots. Nature Nanotech. 8, 502–505 (2013).

    ADS  Article  Google Scholar 

  2. 2

    Cao, M. S., Parker, I. D., Yu, G., Zhang, C. & Heeger, A. J. Improved quantum eficiency for electroluminescence in semiconducting polymers. Nature 397, 414–417 (1999).

    ADS  Article  Google Scholar 

  3. 3

    Adachi, C., Baldo, M. A., Thompson, M. E. & Forrest, S. R. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. J. Appl. Phys. 90, 5048–5051 (2001).

    ADS  Article  Google Scholar 

  4. 4

    Semonin, O. E. et al. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334, 1530–1533 (2011).

    ADS  Article  Google Scholar 

  5. 5

    Congreve, D. N. et al. External quantum efficiency above 100% in a singlet-exciton-fission-based organic photovoltaic cell. Science 340, 334–337 (2013).

    ADS  Article  Google Scholar 

  6. 6

    Misewich, J. A. et al. Electrically induced optical emission from a carbon nanotube FET. Science 300, 783–786 (2003).

    ADS  Article  Google Scholar 

  7. 7

    Arnold, M. S. et al. Broad spectral response using carbon nanotube/organic semiconductor/C-60 photodetectors. Nano Lett. 9, 3354–3358 (2009).

    ADS  Article  Google Scholar 

  8. 8

    Shao, Y. & Yang, Y. Efficient organic heterojunction photovoltaic cells based on triplet materials. Adv. Mater. 17, 2841–2844 (2005).

    Article  Google Scholar 

  9. 9

    Perebeinos, V., Tersoff, J. & Avouris, P. Radiative lifetime of excitons in carbon nanotubes. Nano Lett. 5, 2495–2499 (2005).

    ADS  Article  Google Scholar 

  10. 10

    Spataru, C. D., Ismail-Beigi, I., Capaz, R. B. & Louie, S. G. Theory and ab initio calculation of radiative lifetime of excitons in semiconducting carbon nanotubes. Phys. Rev. Lett. 95, 247402 (2005).

    ADS  Article  Google Scholar 

  11. 11

    Ando, T. Effects of valley mixing and exchange on excitons in carbon nanotubes with aharonov-bohm flux. J. Phys. Soc. Jpn 75, 024707 (2006).

    ADS  Article  Google Scholar 

  12. 12

    Tretiak, S. Triplet state absorption in carbon nanotubes: A TD-DFT study. Nano Lett. 7, 2201–2206 (2007).

    ADS  Article  Google Scholar 

  13. 13

    Chang, E. et al. Excitons in carbon nanotubes: an ab initio symmetry-based approach. Phys. Rev. Lett. 92, 196401 (2004).

    ADS  Article  Google Scholar 

  14. 14

    Jones, M. et al. Extrinsic and intrinsic effects on the excited-state kinetics of single-walled carbon nanotubes. Nano Lett. 7, 300–306 (2007).

    ADS  Article  Google Scholar 

  15. 15

    Aryanpour, K., Mazumdar, S. & Zhao, H. Triplet excitations in carbon nanostructures. Phys. Rev. B 85, 085438 (2012).

    ADS  Article  Google Scholar 

  16. 16

    Mortimer, I. B. & Nicholas, R. J. Role of bright and dark excitons in the temperature-dependent photoluminescence of carbon nanotubes. Phys. Rev. Lett. 98, 027404 (2007).

    ADS  Article  Google Scholar 

  17. 17

    Wang, F., Dukovic, G., Brus, L. E. & Heinz, T. F. The optical resonances in carbon nanotubes arise from excitons. Science 308, 838–841 (2005).

    ADS  Article  Google Scholar 

  18. 18

    Maultzsch, J. et al. Exciton binding energies in carbon nanotubes from two-photon photoluminescence. Phys. Rev. B 72, 241402 (2005).

    ADS  Article  Google Scholar 

  19. 19

    Lefebvre, J. & Finnie, P. Excited excitonic states in single-walled carbon nanotubes. Nano Lett. 8, 1890–1895 (2009).

    ADS  Article  Google Scholar 

  20. 20

    Hagen, A. et al. Exponential decay lifetimes of excitons in individual single-walled carbon nanotubes. Phys. Rev. Lett. 95, 197401 (2005).

    ADS  Article  Google Scholar 

  21. 21

    Graham, M. W. et al. Pure optical dephasing dynamics in semiconducting single-walled carbon nanotubes. J. Chem. Phys. 134, 034504 (2011).

    ADS  Article  Google Scholar 

  22. 22

    Zhu, Z. P. et al. Pump–probe spectroscopy of exciton dynamics in (6,5) carbon nanotubes. J. Phys. Chem. C 111, 3831–3835 (2007).

    Article  Google Scholar 

  23. 23

    Wang, F., Dukovic, G., Knoesel, E., Brus, L. E. & Heinz, T. F. Observation of rapid Auger recombination in optically excited semiconducting carbon nanotubes. Phys. Rev. B 70, 241403 (2004).

    ADS  Article  Google Scholar 

  24. 24

    Ma, Y. Z. et al. Ultrafast carrier dynamics in single-walled carbon nanotubes probed by femtosecond spectroscopy. J. Chem. Phys. 120, 3368–3373 (2004).

    ADS  Article  Google Scholar 

  25. 25

    Manzoni, C. et al. Intersubband exciton relaxation dynamics in single-walled carbon nanotubes. Phys. Rev. Lett. 94, 207401 (2005).

    ADS  Article  Google Scholar 

  26. 26

    Cognet, L. et al. Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions. Science 316, 1465–1468 (2007).

    ADS  Article  Google Scholar 

  27. 27

    Hertel, T., Himmelein, S., Ackermann, T., Stich, D. & Crochet, J. Diffusion limited photoluminescence quantum yields in 1-D semiconductors: single-wall carbon nanotubes. ACS Nano 4, 7161–7168 (2010).

    Article  Google Scholar 

  28. 28

    Murakami, Y. & Kono, J. Nonlinear photoluminescence excitation spectroscopy of carbon nanotubes: exploring the upper density limit of one-dimensional excitons. Phys. Rev. Lett. 102, 037401 (2009).

    ADS  Article  Google Scholar 

  29. 29

    Santos, S. M. et al. All-optical trion generation in single-walled carbon nanotubes. Phys. Rev. Lett. 107, 187401 (2011).

    ADS  Article  Google Scholar 

  30. 30

    Gosh, S., Bachilo, S. M., Simonette, R. A., Beckingham, K. M. & Weisman, R. B. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes. Science 330, 1656–1659 (2010).

    ADS  Article  Google Scholar 

  31. 31

    Nagatsu, K., Chiashi, S., Konabe, S. & Homma, Y. Brightening of triplet dark excitons by atomic hydrogen adsorption in single-walled carbon nanotubes observed by photoluminescence spectroscopy. Phys. Rev. Lett. 105, 157403 (2010).

    ADS  Article  Google Scholar 

  32. 32

    Kanemitsu, Y. Excitons in semiconducting carbon nanotubes: diameter-dependent photoluminescence spectra. Phys. Chem. Chem. Phys. 13, 14879–14888 (2011).

    Article  Google Scholar 

  33. 33

    Park, J., Deria, P. & Therien, M. J. Dynamics and transient absorption spectral signatures of the single-wall carbon nanotube electronically excited triplet state. J. Am. Chem. Soc. 133, 17156–17159 (2011).

    Article  Google Scholar 

  34. 34

    Mohite, A. D., Santos, T. S., Moodera, J. S. & Alphenaar, B. W. Observation of the triplet exciton in EuS-coated single-walled nanotubes. Nature Nanotech. 4, 425–429 (2009).

    ADS  Article  Google Scholar 

  35. 35

    Lebedkin, S., Hennrich, F., Kiowski, O. & Kappes, M. M. Photophysics of carbon nanotubes in organic polymer–toluene dispersions: emission and excitation satellites and relaxation pathways. Phys. Rev. B 77, 165429 (2008).

    ADS  Article  Google Scholar 

  36. 36

    Crochet, J., Clemens, M. & Hertel, T. Quantum yield heterogeneities of aqueous single-wall carbon nanotube suspensions. J. Am. Chem. Soc. 129, 8058–8059 (2007).

    Article  Google Scholar 

  37. 37

    Tsyboulski, D. A., Rocha, J. D. R., Bachilo, S. M., Cognet, L. & Weisman, R. B. Structure-dependent fluorescence efficiencies of individual single-walled cardon nanotubes. Nano Lett. 7, 3080–3085 (2007).

    ADS  Article  Google Scholar 

  38. 38

    Russo, R. M. et al. One-dimensional diffusion-limited relaxation of photoexcitations in suspensions of single-walled carbon nanotubes. Phys. Rev. B 74, 041405 (2006).

    ADS  Article  Google Scholar 

  39. 39

    Toussaint, D. & Wilczek, F. Particle antiparticle annihilation in diffusive motion. J. Chem. Phys. 78, 2642–2647 (1983).

    ADS  Article  Google Scholar 

  40. 40

    Suna, A. Kinematics of exciton–exciton annihilation in molecular crystals. Phys. Rev. B 1, 1716–1739 (1970).

    ADS  Article  Google Scholar 

  41. 41

    Merrifield, R. Magnetic effects on triplet exciton interactions. Pure Appl. Chem. 27, 481–498 (1970).

    Article  Google Scholar 

  42. 42

    Dyakonov, V., Rosler, G., Schwoerer, M. & Frankevich, L. E. Evidence for triplet interchain polaron pairs and their transformations in polyphenylenevinylene. Phys. Rev. B 56, 3852–3862 (1997).

    ADS  Article  Google Scholar 

  43. 43

    van Kampen, N. Stochastic Processes in Physics and Chemistry (North-Holland, 1992).

    MATH  Google Scholar 

  44. 44

    Capaz, R. B., Spataru, C. D., Ismail-Beigi, S. & Louie, S. G. Diameter and chirality dependence of exciton properties in carbon nanotubes. Phys. Rev. B 74, 121401 (2006).

    ADS  Article  Google Scholar 

  45. 45

    Weiland, J. A. & Bolton, J. R. Electron Paramagnetic Resonance. Elementary Theory and Practical Applications 2nd edn (Wiley-Interscience, 2006).

    Google Scholar 

  46. 46

    Epshtein, O., Nakhmanovich, G., Eichen, Y. & Ehrenfreund, E. Dispersive dynamics of photoexcitations in conjugated polymers measured by photomodulation spectroscopy. Phys. Rev. B 63, 125206 (2001).

    ADS  Article  Google Scholar 

  47. 47

    Schoppler, F. et al. Molar extinction coefficient of single-wall carbon nanotubes. J. Phys. Chem. C 115, 14682–14686 (2011).

    Article  Google Scholar 

  48. 48

    Habenicht, B. & Prezhdo, O. Ab initio time-domain study of the triplet state in a semiconducting carbon nanotube: intersystem crossing, phosphorescence time, and line width. J. Am. Chem. Soc. 134, 15648–15651 (2012).

    Article  Google Scholar 

  49. 49

    Masser, T. & ben Avraham, D. Kinetics of coalescence, annihilation, and the q-state Potts model in one dimension. Phys. Lett. A 275, 382–385 (2000).

    ADS  Article  Google Scholar 

  50. 50

    Ozawa, H., Ide, N., Fujigaya, T., Niidome, Y. & Nakashima, N. One-pot separation of highly enriched (6,5)-single-walled carbon nanotubes using a fluorene-based copolymer. Chem. Lett. 40, 239–241 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

V.D. acknowledges financial support through ZAE Bayern, funded through the Bavarian Ministry of Economic Affairs, Infrastructure, Transport and Technology. T.H. acknowledges stimulating discussions with J. Allam.

Author information

Affiliations

Authors

Contributions

D.S. and F.S. carried out the time-resolved photoluminescence measurements and prepared samples. H.K., A.S. and V.D. were responsible for ODMR experiments, their interpretation and design. T.H. and F.S. developed the kinetic model. All authors contributed to the interpretation of the results and writing of the manuscript.

Corresponding author

Correspondence to Tobias Hertel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 768 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stich, D., Späth, F., Kraus, H. et al. Triplet–triplet exciton dynamics in single-walled carbon nanotubes. Nature Photon 8, 139–144 (2014). https://doi.org/10.1038/nphoton.2013.316

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing