Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

90-degree optical switching of output second-harmonic light in chiral photomagnet

Abstract

Optical control of physical properties and functionalities is an attractive area of research in the development of advanced optical materials. Here, we report a magnet that can switch the polarization plane of light by 90° under optical stimulation. The magnet is a chiral structured iron-octacyanoniobate, and its magnetic properties can be reversibly switched by irradiating with blue and red light, which causes light-reversible spin-crossover on the iron(II) ion. Using this material, second-harmonic generation, a nonlinear optical effect, was investigated. The vertical polarization plane was switched to horizontal polarization by irradiating with blue light, and was then returned to the original vertical polarization by irradiating with red light. This phenomenon originates from alternate optical switching between crystallographic and magnetic contributions to second-harmonic generation within the magnet, where the chiral structure and photomagnetism are coupled. The observed perpendicular optical switching should encourage studies in the fields of magneto-optical memory and optoelectronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of (±)-Fe2[Nb(CN)8](4-bromopyridine)8·2H2O.
Figure 2: Spin-crossover effect on magnetic susceptibility and spin-crossover induced SHG.
Figure 3: Photo-reversible magnetization due to light-reversible spin-crossover effect.
Figure 4: Optical switching of MSHG.

Similar content being viewed by others

References

  1. Polli, D. et al. Coherent orbital waves in the photo-induced insulator–metal dynamics of a magnetoresistive manganite. Nature Mater. 6, 643–647 (2007).

    Article  ADS  Google Scholar 

  2. Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nature Mater. 6, 824–832 (2007).

    Article  ADS  Google Scholar 

  3. Collet, E. et al. Laser-induced ferroelectric structural order in an organic charge-transfer crystal. Science 300, 612–615 (2003).

    Article  ADS  Google Scholar 

  4. Ohkoshi, S. et al. Synthesis of a metal oxide with a room-temperature photoreversible phase transition. Nature Chem. 2, 539–545 (2010).

    Article  ADS  Google Scholar 

  5. Nasu, K. Relaxations of Excited States and Photo-Induced Structural Phase Transitions (Springer, 1997).

    Book  Google Scholar 

  6. Miyano, K., Tanaka, T., Tomioka, Y. & Tokura, Y. Photoinduced insulator-to-metal transition in a perovskite manganite. Phys. Rev. Lett. 78, 4257–4260 (1997).

    Article  ADS  Google Scholar 

  7. Koshihara, S. et al. Ferromagnetic order induced by photogenerated carriers in magnetic III–V semiconductor heterostructures of (In,Mn)As/GaSb. Phys. Rev. Lett. 78, 4617–4620 (1997).

    Article  ADS  Google Scholar 

  8. Irie, M., Fukaminato, T., Sasaki, T., Tamai, N. & Kawai, T. A digital fluorescent molecular photoswitch. Nature 420, 759–760 (2002).

    Article  ADS  Google Scholar 

  9. Gütlich, P. & Goodwin, H. A. in Spin Crossover in Transition Metal Compounds I (eds Gütlich, P. & Goodwin, H. A.) Ch.1 (Springer, 2004).

  10. Decurtins, S., Gütlich, P., Köhler, C. P., Spiering, H. & Hauser, A. Light-induced excited spin state trapping in a transition–metal complex: the hexa-1-propyltetrazole-iron(II) tetrafluoroborate spin-crossover system. Chem. Phys. Lett. 105, 1–4 (1984).

    Article  ADS  Google Scholar 

  11. Kahn, O. & Martinez, C. J. Spin-transition polymers: from molecular materials toward memory devices. Science 279, 44–48 (1998).

    Article  ADS  Google Scholar 

  12. Real, J. A. et al. Spin crossover in a catenane supramolecular system. Science 268, 265–267 (1995).

    Article  ADS  Google Scholar 

  13. Halder, G. J., Kepert, C. J., Moubaraki, B., Murray, K. S. & Cashion, J. D. Guest-dependent spin crossover in a nanoporous molecular framework material. Science 298, 1762–1765 (2002).

    Article  ADS  Google Scholar 

  14. Ohkoshi, S., Imoto, K., Tsunobuchi, Y., Takano, S. & Tokoro, H. Light-induced spin-crossover magnet. Nature Chem. 3, 564–569 (2011).

    Article  ADS  Google Scholar 

  15. Létard, J. F. et al. Wide thermal hysteresis for the mononuclear spin-crossover compound cis-bis(thiocyanato)bis[N-(2′-pyridylmethylene)-4-(phenylethynyl)anilino]iron(II). J. Am. Chem. Soc. 119, 10861–10862 (1997).

    Article  Google Scholar 

  16. Boukheddaden, K., Shteto, I., Hoo, B. & Varret, F. Dynamical model for spin-crossover solids. I. Relaxation effects in the mean-field approach. Phys. Rev. B 62, 14796–14805 (2000).

    Article  ADS  Google Scholar 

  17. Renz, F. et al. Strong field iron (II) complex converted by light into a long-lived high-spin state. Angew. Chem. Int. Ed. 39, 3699–3700 (2000).

    Article  Google Scholar 

  18. Widrow, L. M. Origin of galactic and extragalactic magnetic fields. Rev. Mod. Phys. 74, 775–822 (2002).

    Article  ADS  Google Scholar 

  19. Bailey, J. et al. Circular polarization in star-formation regions: implications for biomolecular homochirality. Science 281, 672–674 (1998).

    Article  ADS  Google Scholar 

  20. Looger, L. L., Dwyer, M. A., Smith, J. J. & Hellinga, H. W. Computational design of receptor and sensor proteins with novel functions. Nature 423, 185–190 (2003).

    Article  ADS  Google Scholar 

  21. Katsnelson, M. I., Novoselov, K. S. & Geim, A. K. Chiral tunneling and the Klein paradox in graphene. Nature Phys. 2, 620–625 (2012).

    Article  ADS  Google Scholar 

  22. Noyori, R. Chiral metal complexes as discriminating molecular catalysts. Science 248, 1194–1199 (1990).

    Article  ADS  Google Scholar 

  23. Rikken, G. L. J. A. & Raupach, E. Enantioselective magnetochiral photochemistry. Nature 405, 932–935 (2000).

    Article  ADS  Google Scholar 

  24. Sioncke, S., Verbiest, T. & Persoons, A. Second-order nonlinear optical properties of chiral materials. Mater. Sci. Eng. R 42, 115–155 (2003).

    Article  Google Scholar 

  25. Pan, R. P., Wei, H. D. & Shen, Y. R. Optical second-harmonic generation from magnetized surfaces. Phys. Rev. B 39, 1229–1234 (1989).

    Article  ADS  Google Scholar 

  26. Aktsipetrov, O. A., Braginskii, O. V. & Esikov, D. A. Nonlinear optics of gyrotropic media: second-harmonic generation in rare-earth iron garnets. Sov. J. Quantum Electron. 20, 259–263 (1990).

    Article  ADS  Google Scholar 

  27. Pavlov, V. V., Pisarev, R. V., Kirilyuk, A. & Rasing, Th. Observation of a transversal nonlinear magneto-optical effect in thin magnetic garnet films. Phys. Rev. Lett. 78, 2004–2007 (1997).

    Article  ADS  Google Scholar 

  28. Fiebig, M., Lottermoser, Th., Frohlich, D., Goltsev, A. V. & Pisarev, R. V. Observation of coupled magnetic and electric domains. Nature 419, 818–820 (2002).

    Article  ADS  Google Scholar 

  29. Ohkoshi, S., Shimura, J., Ikeda, K. & Hashimoto, K. Magnetization-induced second- and third-harmonic generation in transparent magnetic films. J. Opt. Soc. Am. B 22, 196–203 (2005).

    Article  ADS  Google Scholar 

  30. Pinkowicz, D. et al. Multifunctinal magnetic molecular {[MnII(urea)2(H2O)2][NbIV(CN)8]}n system: magnetization-induced SHG in the chiral polymorph. Chem. Mater. 23, 21–31 (2011).

    Article  Google Scholar 

  31. Rikken, G. L. J. A. & Raupach, E. Observation of magneto-chiral dichroism. Nature 390, 493–494 (1997).

    Article  ADS  Google Scholar 

  32. Train, C. et al. Strong magneto-chiral dichroism in enantiopure chiral ferromangets. Nature Mater. 7, 729–734 (2008).

    Article  ADS  Google Scholar 

  33. Kitagawa, Y., Segawa, H. & Ishii, K. Magneto-chiral dichroism of organic compounds. Angew. Chem. Int. Ed. 50, 9133–9136 (2011).

    Article  Google Scholar 

  34. Train, C., Gruselle, M. & Verdaguer, M. The fruitful introduction of chirality and control of absolute configurations in molecular magnets. Chem. Soc. Rev. 40, 3297–3312 (2011).

    Article  Google Scholar 

  35. Benard, S. et al. Structure and NLO properties of layered bimetallic oxalato-bridged ferromagnetic networks containing stilbazolium-shaped chromophores. J. Am. Chem. Soc. 122, 9444–9454 (2000).

    Article  Google Scholar 

  36. Inoue, K. et al. Three-dimensional ferrimagnet with a high magnetic transition temperature (TC) of 53 K based on a chiral molecule. Angew. Chem. Int. Ed. 40, 4242–4245 (2001).

    Article  Google Scholar 

  37. Clemente-Leon, M., Coronado, E., Dias, J. C., Soriano-Portillo, A. & Willett, R. D. Synthesis, structure, and magnetic properties of [(S)-[PhCH(CH3)N(CH3)3]][Mn(CH3CN)2/3Cr(ox)3]·(CH3CN)_(solvate), a 2D chiral magnet containing a quaternary ammonium chiral cation. Inorg. Chem. 47, 6458–6463 (2008).

    Article  Google Scholar 

  38. Birss, R. R. Symmetry and Magnetism Vol. 3 (North Holland, 1964).

    MATH  Google Scholar 

  39. Kleinman, D. A. Nonlinear dielectric polarization in optical media. Phys. Rev. 126, 1977–1979 (1962).

    Article  ADS  Google Scholar 

  40. Ferlay, S., Mallah, T., Ouahès, R., Veillet, P. & Verdaguer, M. A room-temperature organometallic magnet based on Prussian blue. Nature 378, 701–703 (1995).

    Article  ADS  Google Scholar 

  41. Entley, W. R. & Girolami, G. S. High-temperature molecular magnets based on cyanovanadate building blocks: spontaneous magnetization at 230 K. Science 268, 397–400 (1995).

    Article  ADS  Google Scholar 

  42. Mallah, T., Thebaut, S., Verdaguer, M. & Veillet, P. High-TC molecular-based magnets: ferrimagnetic mixed-valence chromium(III)–chromiun(II) cyanides with TC at 240 and 190 kelvin. Science 262, 1554–1557 (1993).

    Article  ADS  Google Scholar 

  43. Ohkoshi, S., Arai, K., Sato, Y. & Hashimoto, K. Humidity-induced magnetization and magnetic pole inversion in a cyano-bridged metal assembly. Nature Mater. 3, 857–861 (2004).

    Article  ADS  Google Scholar 

  44. Margadonna, S., Prassides, K. & Fitch, A. N. Large lattice responses in a mixed-valence Prussian blue analogue owing to electronic and spin transitions induced by X-ray irradiation. Angew. Chem. Int. Ed. 43, 6316–6319 (2004).

    Article  Google Scholar 

  45. Kaye, S. S. & Long, J. R. Hydrogen storage in the dehydrated Prussian blue analogues M3[Co(CN)6]2 (M=Mn, Fe, Co, Ni, Cu, Zn). J. Am. Chem. Soc. 127, 6506–6507 (2005).

    Article  Google Scholar 

  46. Przychodzeń, P., Korzeniak, T., Podgajny, R. & Sieklucka, B. Supramolecular coordination networks based on octacyanometalates: from structure to function. Coord. Chem. Rev. 250, 2234–2260 (2006).

    Article  Google Scholar 

  47. Sato, O., Iyoda, T., Fujishika, A. & Hashimoto, K. Photoinduced magnetization of a cobalt-iron cyanide. Science 272, 704–705 (1996).

    Article  ADS  Google Scholar 

  48. Ohkoshi, S. & Hashimoto, K. Photo-magnetic and magneto-optical effects of functionalized metal polycyanides. J. Photochem. Photobiol. C 2, 71–88 (2001).

    Article  Google Scholar 

  49. Ohkoshi, S. & Tokoro, H. Photomagnetism in cyano-bridged bimetal assemblies. Acc. Chem. Res. 40, 1749–1758 (2012).

    Article  Google Scholar 

  50. Bleuzen, A., Marvaud, V., Mathonière, C., Sieklucka, B. & Verdaguer, M. Photomagnetism in clusters and extended molecule-based magnets. Inorg. Chem. 48, 3453–3466 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank K. Nakagawa and K. Nakabayashi for helpful discussions. The authors also thank T. Uchiyama of JASCO Corporation for the NCD measurement. The present research was supported in part by the Core Research for Evolutional Science and Technology project of the Japan Science and Technology Agency, the Funding Program for Next Generation World-Leading Researchers from the Japan Society for the Promotion of Science (JSPS), a Grant for the Global COE Program ‘Chemistry Innovation through Cooperation of Science and Engineering’, the Advanced Photon Science Alliance from the Ministry of Education, Culture, Sports, Science & Technology (MEXT), and the Asahi Glass Foundation. The authors also recognize the Cryogenic Research Center, The University of Tokyo, and the Center for Nano Lithography & Analysis, The University of Tokyo, which are supported by MEXT. M.Y. is grateful to the Advanced Leading Graduate Course for Photon Science. A.N. is thankful to the Research Activity Start-up, and K.I. and M.Y. are grateful for a Research Fellowship for Young Scientists of JSPS.

Author information

Authors and Affiliations

Authors

Contributions

S.O. designed and coordinated the study, contributed to all measurements and calculations, and wrote the manuscript. S.T. performed the synthesis, photoirradiation measurements, Mössbauer spectroscopy and SHG and MSHG measurements. K.I. conducted photoirradiation measurements, Mössbauer spectroscopy and XRD measurements. M.Y. analysed the optical properties. A.N. performed XRD measurements and analysed the MSHG tensors. H.T. carried out photoirradiation measurements, XRD measurements and SHG and MSHG measurements. All authors commented on the manuscript.

Corresponding author

Correspondence to Shin-ichi Ohkoshi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2642 kb)

Supplementary Movie 1

Supplementary Movie 1 (MOV 3080 kb)

Supplementary Movie 2

Supplementary Movie 2 (MOV 2944 kb)

Supplementary Movie 3

Supplementary Movie 3 (MOV 3057 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohkoshi, Si., Takano, S., Imoto, K. et al. 90-degree optical switching of output second-harmonic light in chiral photomagnet. Nature Photon 8, 65–71 (2014). https://doi.org/10.1038/nphoton.2013.310

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.310

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing