Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE)

Abstract

Focusing of light in the diffusive regime inside scattering media has long been considered impossible. Recently, this limitation has been overcome with time reversal of ultrasound-encoded light (TRUE), but the resolution of this approach is fundamentally limited by the large number of optical modes within the ultrasound focus. Here, we introduce a new approach, time reversal of variance-encoded light (TROVE), which demixes these spatial modes by variance encoding to break the resolution barrier imposed by the ultrasound. By encoding individual spatial modes inside the scattering sample with unique variances, we effectively uncouple the system resolution from the size of the ultrasound focus. This enables us to demonstrate optical focusing and imaging with diffuse light at an unprecedented, speckle-scale lateral resolution of 5 µm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic comparison of TRUE and TROVE focusing.
Figure 2: Characterization of frequency-shifted wavefronts at the ultrasound plane.
Figure 3: Visualization of speckle-scale optical focusing.
Figure 4: Point-spread function and image acquisition.

Similar content being viewed by others

References

  1. Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nature Photon. 6, 283–292 (2012).

    Article  ADS  Google Scholar 

  2. Freund, I. Looking through walls and around corners. Physica A 168, 49–65 (1990).

    Article  ADS  Google Scholar 

  3. Vellekoop, I. M., Lagendijk, A. & Mosk, A. P. Exploiting disorder for perfect focusing. Nature Photon. 4, 320–322 (2010).

    Article  Google Scholar 

  4. Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007).

    Article  ADS  Google Scholar 

  5. Katz, O., Small, E. & Silberberg, Y. Looking around corners and through thin turbid layers in real time with scattered incoherent light. Nature Photon. 6, 549–553 (2012).

    Article  ADS  Google Scholar 

  6. Katz, O., Small, E., Bromberg, Y. & Silberberg, Y. Focusing and compression of ultrashort pulses through scattering media. Nature Photon. 5, 372–377 (2011).

    Article  ADS  Google Scholar 

  7. Van Putten, E. G. et al. Scattering lens resolves sub-100 nm structures with visible light. Phys. Rev. Lett. 106, 193905 (2011).

    Article  ADS  Google Scholar 

  8. Aulbach, J., Gjonaj, B., Johnson, P. M., Mosk, A. P. & Lagendijk, A. Control of light transmission through opaque scattering media in space and time. Phys. Rev. Lett. 106, 13901 (2011).

    Article  Google Scholar 

  9. Lerosey, G., De Rosny, J., Tourin, A. & Fink, M. Focusing beyond the diffraction limit with far-field time reversal. Science 315, 1120–1122 (2007).

    Article  ADS  Google Scholar 

  10. Yaqoob, Z., Psaltis, D., Feld, M. S. & Yang, C. H. Optical phase conjugation for turbidity suppression in biological samples. Nature Photon. 2, 110–115 (2008).

    Article  ADS  Google Scholar 

  11. Popoff, S., Lerosey, G., Fink, M., Boccara, A. C. & Gigan, S. Image transmission through an opaque material. Nature Commun. 1, 81 (2010).

    Article  ADS  Google Scholar 

  12. Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010).

    Article  ADS  Google Scholar 

  13. Cizmar, T. & Dholakia, K. Exploiting multimode waveguides for pure fibre-based imaging. Nature Commun. 3, 1027 (2012).

    Article  ADS  Google Scholar 

  14. Choi, Y. et al. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. Phys. Rev. Lett. 109, 203901 (2012).

    Article  ADS  Google Scholar 

  15. Choi, W., Mosk, A. P., Park, Q. H. & Choi, W. Transmission eigenchannels in a disordered medium. Phys. Rev. B 83, 134207 (2011).

    Article  ADS  Google Scholar 

  16. Hsieh, C. L., Pu, Y., Grange, R. & Psaltis, D. Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media. Opt. Express 18, 12283–12290 (2010).

    Article  ADS  Google Scholar 

  17. Vellekoop, I. M., Cui, M. & Yang, C. H. Digital optical phase conjugation of fluorescence in turbid tissue. Appl. Phys. Lett. 101, 081108 (2012).

    Article  ADS  Google Scholar 

  18. Tao, X. et al. Adaptive optics microscopy with direct wavefront sensing using fluorescent protein guide stars. Opt. Lett. 36, 3389–3391 (2011).

    Article  ADS  Google Scholar 

  19. Xu, X., Liu, H. & Wang, L. V. Time-reversed ultrasonically encoded optical focusing into scattering media. Nature Photon. 5, 154–157 (2011).

    Article  ADS  Google Scholar 

  20. Lai, P., Xu, X., Liu, H., Suzuki, Y. & Wang, L. V. Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media. J. Biomed. Opt. 16, 080505 (2011).

    Article  ADS  Google Scholar 

  21. Liu, H., Xu, X., Lai, P. & Wang, L. V. Time-reversed ultrasonically encoded optical focusing into tissue-mimicking media with thickness up to 70 mean free paths. J. Biomed. Opt. 16, 086009 (2011).

    Article  ADS  Google Scholar 

  22. Wang, Y. M., Judkewitz, B., DiMarzio, C. A. & Yang, C. H. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light. Nature Commun. 3, 928 (2012).

    Article  ADS  Google Scholar 

  23. Si, K., Fiolka, R. & Cui, M. Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation. Nature Photon. 6, 657–661 (2012).

    Article  ADS  Google Scholar 

  24. Bertolotti, J. et al. Non-invasive imaging through opaque scattering layers. Nature 491, 232–234 (2012).

    Article  ADS  Google Scholar 

  25. Si, K., Fiolka, R. & Cui, M. Breaking the spatial resolution barrier via iterative sound–light interaction in deep tissue microscopy. Sci. Rep. 2, 748 (2012).

    Article  ADS  Google Scholar 

  26. Conkey, D. B., Caravaca-Aguirre, A. M. & Piestun, R. High-speed scattering medium characterization with application to focusing light through turbid media. Opt. Express 20, 1733–1740 (2012).

    Article  ADS  Google Scholar 

  27. Redding, B., Choma, M. A. & Cao, H. Speckle-free laser imaging using random laser illumination. Nature Photon. 6, 355–359 (2012).

    Article  ADS  Google Scholar 

  28. Draijer, M., Hondebrink, E., Leeuwen, T. & Steenbergen, W. Review of laser speckle contrast techniques for visualizing tissue perfusion. Lasers Med. Sci. 24, 639–651 (2009).

    Article  Google Scholar 

  29. Hajjarian, Z., Xi, J., Jaffer, F. A., Tearney, G. J. & Nadkarni, S. K. Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall. J. Biomed. Opt. 16, 026005 (2011).

    Article  ADS  Google Scholar 

  30. Lev, A. & Sfez, B. In vivo demonstration of the ultrasound-modulated light technique. J. Opt. Soc. Am. A 20, 2347–2354 (2003).

    Article  ADS  Google Scholar 

  31. Cui, M., McDowell, E. J. & Yang, C. An in vivo study of turbidity suppression by optical phase conjugation (TSOPC) on rabbit ear. Opt. Express 18, 25–30 (2010).

    Article  ADS  Google Scholar 

  32. Yamaguchi, I. & Zhang, T. Phase-shifting digital holography. Opt. Lett. 22, 1268–1270 (1997).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank I. Vellekoop for discussions and P. Willems for comments on the manuscript. B.J. is recipient of a Sir Henry Wellcome Fellowship from the Wellcome Trust. Y.M.W. acknowledges support from the National Science Scholarship, awarded by the Agency for Science, Technology and Research, Singapore. This work is supported by the National Institutes of Health (1DP2OD007307-01) and the Defense Advanced Research Projects Agency (W31P4Q-11-1-0008).

Author information

Authors and Affiliations

Authors

Contributions

B.J. and Y.M.W. contributed equally to this work. B.J. conceived the idea. B.J. and Y.M.W. developed the idea, with the help of R.H., A.M. and C.Y. The experiment was designed by B.J. and Y.M.W., who also built the set-up, collected data, performed the simulation and data analysis, and wrote the manuscript. R.H. contributed to the manuscript and to the simulation results. R.H. and A.M. contributed to analysis and mathematical derivation. C.Y. supervised the project and contributed to the manuscript.

Corresponding authors

Correspondence to Benjamin Judkewitz or Ying Min Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1272 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Judkewitz, B., Wang, Y., Horstmeyer, R. et al. Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE). Nature Photon 7, 300–305 (2013). https://doi.org/10.1038/nphoton.2013.31

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.31

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing