Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Controlling light in scattering media non-invasively using the photoacoustic transmission matrix

Abstract

Optical wavefront shaping has emerged as a powerful tool for manipulating light in strongly scattering media. It enables diffraction-limited focusing and imaging at depths where conventional microscopy techniques fail. However, to date, most examples of wavefront shaping have relied on direct access to the targets or implanted probes, and the challenge is to apply it non-invasively inside complex samples. Recently, ultrasonic-tagging techniques have been utilized successfully, but these allow only small acoustically tagged volumes to be addressed at each measurement. Here, we introduce an approach that allows the non-invasive measurement of an optical transmission matrix over a large volume, inside complex samples, using a standard photoacoustic imaging set-up. We demonstrate the use of this matrix for detecting, localizing and selectively focusing light on absorbing targets through diffusive samples, as well as for extracting the scattering medium properties. Combining the transmission-matrix approach with the advantages of photoacoustic imaging opens a path towards deep-tissue imaging and light delivery utilizing endogenous optical contrast.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Measuring a photoacoustic transmission matrix.
Figure 2: Selective focusing with the transmission matrix.
Figure 3: Revealing the memory effect from the measured transmission matrix.
Figure 4: Localizing absorbing targets by SVD of the transmission matrix.

References

  1. Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nature Methods 7, 603–614 (2010).

    Article  Google Scholar 

  2. Hirsch, L. R. et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl Acad. Sci. USA 100, 13549–13554 (2003).

    ADS  Article  Google Scholar 

  3. Sebbah, P. Waves and Imaging Through Complex Media (Kluwer Academic, 2001).

    Book  Google Scholar 

  4. Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nature Photon. 6, 283–292 (2012).

    ADS  Article  Google Scholar 

  5. Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007).

    ADS  Article  Google Scholar 

  6. Vellekoop, I. M., Lagendijk, A. & Mosk, A. P. Exploiting disorder for perfect focusing. Nature Photon. 4, 320–322 (2010).

    Article  Google Scholar 

  7. Vellekoop, I. M. & Aegerter, C. M. Scattered light fluorescence microscopy: imaging through turbid layers. Opt. Lett. 35, 1245–1247 (2010).

    ADS  Article  Google Scholar 

  8. Katz, O., Small, E. & Silberberg, Y. Looking around corners and through thin turbid layers in real time with scattered incoherent light. Nature Photon. 6, 549–553 (2012).

    ADS  Article  Google Scholar 

  9. Katz, O., Small, E., Bromberg, Y. & Silberberg, Y. Focusing and compression of ultrashort pulses through scattering media. Nature Photon. 5, 372–377 (2011).

    ADS  Article  Google Scholar 

  10. Vellekoop, I. M., van Putten, E. G., Lagendijk, A. & Mosk, A. P. Demixing light paths inside disordered metamaterials. Opt. Express 16, 67–80 (2008).

    ADS  Article  Google Scholar 

  11. Hsieh, C.-L., Pu, Y., Grange, R., Laporte, G. & Psaltis, D. Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle. Opt. Express 18, 20723–20731 (2010).

    ADS  Article  Google Scholar 

  12. Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010).

    ADS  Article  Google Scholar 

  13. Popoff, S., Lerosey, G., Fink, M., Boccara, A. C. & Gigan, S. Image transmission through an opaque material. Nature Commun. 1, 81 (2010).

    ADS  Article  Google Scholar 

  14. Cizmar, T., Mazilu, M. & Dholakia, K. In situ wavefront correction and its application to micromanipulation. Nature Photon. 4, 388–394 (2010).

    ADS  Article  Google Scholar 

  15. Choi, Y. et al. Overcoming the diffraction limit using multiple light scattering in a highly disordered medium. Phys. Rev. Lett. 107, 023902 (2011).

    ADS  Article  Google Scholar 

  16. Xu, X., Liu, H. & Wang, L. V. Time-reversed ultrasonically encoded optical focusing into scattering media. Nature Photon. 5, 154–157 (2011).

    ADS  Article  Google Scholar 

  17. Wang, Y. M., Judkewitz, B., DiMarzio, C. A. & Yang, C. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light. Nature Commun. 3, 928 (2012).

    ADS  Article  Google Scholar 

  18. Si, K., Fiolka, R. & Cui, M. Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation. Nature Photon. 6, 657–661 (2012).

    ADS  Article  Google Scholar 

  19. Si, K., Fiolka, R. & Cui, M. Breaking the spatial resolution barrier via iterative sound–light interaction in deep tissue microscopy. Sci. Rep. 2, 748 (2012).

  20. Judkewitz, B., Wang, Y. M., Horstmeyer, R., Mathy, A. & Yang, C. Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE). Nature Photon. 7, 300–305 (2013).

    ADS  Article  Google Scholar 

  21. Yaqoob, Z., Psaltis, D., Feld, M. S. & Yang, C. Optical phase conjugation for turbidity suppression in biological samples. Nature Photon. 2, 110–115 (2008).

    ADS  Article  Google Scholar 

  22. Kong, F. et al. Photoacoustic-guided convergence of light through optically diffusive media. Opt. Lett. 36, 2053–2055 (2011).

    ADS  Article  Google Scholar 

  23. Popoff, S. M., Lerosey, G., Fink, M., Boccara, A. C. & Gigan, S. Controlling light through optical disordered media: transmission matrix approach. New J. Phys. 13, 123021 (2011).

    ADS  Article  Google Scholar 

  24. Kim, M. et al. Maximal energy transport through disordered media with the implementation of transmission eigenchannels. Nature Photon. 6, 581–585 10.1038/nphoton.2012.159 (2012).

    ADS  Article  Google Scholar 

  25. Freund, I., Rosenbluh, M. & Feng, S. Memory effects in propagation of optical waves through disordered media. Phys. Rev. Lett. 61, 2328–2331 (1988).

    ADS  Article  Google Scholar 

  26. Xu, M. & Wang, L. V. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77, 041101 (2006).

    ADS  Article  Google Scholar 

  27. Zhang, H. F., Maslov, K., Stoica, G. & Wang, L. V. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nature Biotechnol. 24, 848–851 (2006).

    Article  Google Scholar 

  28. Wang, L. V. & Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335, 1458–1462 (2012).

    ADS  Article  Google Scholar 

  29. Bossy, E. et al. Time reversal of photoacoustic waves. Appl. Phys. Lett. 89, 184108 (2006).

    ADS  Article  Google Scholar 

  30. Popoff, S. M. et al. Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis. Phys. Rev. Lett. 107, 263901 (2011).

    ADS  Article  Google Scholar 

  31. Conkey, D. B., Caravaca-Aguirre, A. M. & Piestun, R. High-speed scattering medium characterization with application to focusing light through turbid media. Opt. Express 20, 1733–1740 (2012).

    ADS  Article  Google Scholar 

  32. Fried, D. L. Anisoplanatism in adaptive optics. J. Opt. Soc. Am. 72, 52 (1982).

    ADS  Article  Google Scholar 

  33. Akkermans, E. & Montambaux, G. Mesoscopic Physics of Electrons and Photons (Cambridge Univ. Press, 2007).

    Book  Google Scholar 

  34. Prada, C. & Fink, M. Eigenmodes of the time reversal operator: a solution to selective focusing in multiple-target media. Wave Motion 20, 151–163 (1994).

    MathSciNet  Article  Google Scholar 

  35. Prada, C., Manneville, S., Spoliansky, D. & Fink, M. Decomposition of the time reversal operator: detection and selective focusing on two scatterers. J. Acoust. Soc. Am. 99, 2067–2076 (1996).

    ADS  Article  Google Scholar 

  36. Bleier, A. R. et al. Real-time magnetic resonance imaging of laser heat deposition in tissue. Magn. Reson. Med. 21, 132–137 (1991).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank J. Gateau for fruitful discussions and for valuable comments on the manuscript, and D. Martina for technical support. This work was funded by the European Research Council (grant no. 278025) and by the Fondation Pierre-Gilles de Gennes pour la Recherche (grant no. FPGG031). O.K. is supported by the Marie Curie Intra-European fellowship for career development (IEF) and a Rothschild fellowship.

Author information

Authors and Affiliations

Authors

Contributions

S.G. and E.B. designed the initial experimental set-up. O.K. proposed the photoacoustic transmission matrix approach and analysis. S.G., E.B., T.C. and O.K. discussed the experimental implementation, T.C. and O.K. performed the experiments and analysed the results. S.G., E.B., T.C., O.K., A.C.B. and M.F. contributed to discussing the results and writing the manuscript.

Corresponding author

Correspondence to S. Gigan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 708 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chaigne, T., Katz, O., Boccara, A. et al. Controlling light in scattering media non-invasively using the photoacoustic transmission matrix. Nature Photon 8, 58–64 (2014). https://doi.org/10.1038/nphoton.2013.307

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.307

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing