Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Disordered photonics

Subjects

Abstract

What do lotus flowers have in common with human bones, liquid crystals with colloidal suspensions, and white beetles with the beautiful stones of the Taj Mahal? The answer is they all feature disordered structures that strongly scatter light, in which light waves entering the material are scattered several times before exiting in random directions. These randomly distributed rays interfere with each other, leading to interesting, and sometimes unexpected, physical phenomena. This Review describes the physics behind the optical properties of disordered structures and how knowledge of multiple light scattering can be used to develop new applications. The field of disordered photonics has grown immensely over the past decade, ranging from investigations into fundamental topics such as Anderson localization and other transport phenomena, to applications in imaging, random lasing and solar energy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photograph of the speckle pattern created by a random medium.
Figure 2: Samples that are used to study the multiple scattering of light, microwaves and sound waves.
Figure 3: Two-dimensional silicon wire patterns for solar applications, ranging from ordered (left), to quasi-crystalline and hyper-uniform (right).
Figure 4: Calculation, using the finite-element method, of the electric field inside a system of dielectric rods immersed in a gain medium, at both modest and high scattering strengths.
Figure 5: White beetle Cyphochilus generally occurring in south-east Asia.
Figure 6: Light scattering by a collection of scattering elements of different sizes.
Figure 7: Scattering experiments performed with quantum-entangled photon pairs provide more information than those performed with individual photons.

Similar content being viewed by others

References

  1. Dainty, J. Laser Speckle and Related Phenomena (Springer, 1984).

    Google Scholar 

  2. Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007).

    Article  ADS  Google Scholar 

  3. Kim, M. et al. Maximal energy transport through disordered media with the implementation of transmission eigenchannels. Nature Photon. 6, 581–585 (2012).

    Article  ADS  Google Scholar 

  4. Yaqoob, Z., Psaltis, D., Feld, M. S. & Yang, C. Optical phase conjugation for turbidity suppression in biological samples. Nature Photon. 2, 110–115 (2008).

    Article  ADS  Google Scholar 

  5. Popoff, S., Lerosey, G., Fink, M., Boccara, A. & Gigan, S. Image transmission through an opaque material. Nat. Commun. 1, 1–5 (2010).

    Article  Google Scholar 

  6. Katz, O., Small, E. & Silberberg, Y. Looking around corners and through thin turbid layers in real time with scattered incoherent light. Nature Photon. 6, 549–553 (2012).

    Article  ADS  Google Scholar 

  7. Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nature Photon. 6, 283–292 (2012).

    Article  ADS  Google Scholar 

  8. Katz, O., Small, E., Bromberg, Y. & Silberberg, Y. Focusing and compression of ultrashort pulses through scattering media. Nature Photon. 5, 372–377 (2011).

    Article  ADS  Google Scholar 

  9. Bertolotti, J. et al. Non-invasive imaging through opaque scattering layers. Nature 491, 232–234 (2012).

    Article  ADS  Google Scholar 

  10. Sebbah, P. Waves and Imaging through Complex Media (Kluwer Academic, 1999).

    Google Scholar 

  11. Durduran, T. et al. Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation. Opt. Lett. 29, 1766–1768 (2004).

    Article  ADS  Google Scholar 

  12. Gibson, A. P., Hebden, J. C. & Arridge, S. R. Recent advances in diffuse optical imaging. Phys. Med. Biol. 50, R1–R43 (2005).

    Article  ADS  Google Scholar 

  13. Hu, H., Strybulevych, A., Page, J. H., Skipetrov, S. E. & van Tiggelen, B. A. Localization of ultrasound in a three-dimensional elastic network. Nature Phys. 4, 945–948 (2008).

    Article  ADS  Google Scholar 

  14. Derode, A., Roux, P. & Fink, M. Robust acoustic time-reversal with high-order multiple-scattering. Phys. Rev. Lett. 75, 4206–4209 (1995).

    Article  ADS  Google Scholar 

  15. Lerosey, G., De Rosny, J., Tourin, A. & Fink, M. Focusing beyond the diffraction limit with far-field time reversal. Science 315, 1120–1122 (2007).

    Article  ADS  Google Scholar 

  16. Xu, X., Liu, H. & Wang, L. V. Time-reversed ultrasonically encoded optical focusing into scattering media. Nature Photon. 5, 154–157 (2011).

    Article  ADS  Google Scholar 

  17. Sheng, P. Introduction to Wave Scattering, Localization and Mesoscopic Phenomena (Academic, 1995).

    Google Scholar 

  18. Kuga, Y. & Ishimaru, A. Retroreflectance from a dense distribution of spherical particles. J. Opt. Soc. Am. A 8, 831–835 (1984).

    Article  ADS  Google Scholar 

  19. van Albada, M. P. & Lagendijk, A. Observation of weak localization of light in a random medium. Phys. Rev. Lett. 55, 2692–2695 (1985).

    Article  ADS  Google Scholar 

  20. Wolf, P. E. & Maret, G. Weak localization and coherent backscattering of photons in disordered media. Phys. Rev. Lett. 55, 2696–2699 (1985).

    Article  ADS  Google Scholar 

  21. Wiersma, D. S., van Albada, M. P., van Tiggelen, B. A. & Lagendijk, A. Experimental evidence for recurrent multiple scattering events of light in disordered media. Phys. Rev. Lett. 74, 4193–4196 (1995).

    Article  ADS  Google Scholar 

  22. Labeyrie, G. et al. Coherent backscattering of light by cold atoms. Phys. Rev. Lett. 83, 5266–5269 (1999).

    Article  ADS  Google Scholar 

  23. Vlasov, D. V., Zubkov, L. A., Orekhova, N. V. & Romanov, V. P. Weak localization due to scattering of light in nonoriented liquid crystals. JETP Lett. 48, 91–93 (1988).

    ADS  Google Scholar 

  24. Sapienza, R., Mujumdar, S., Cheung, C., Yodh, A. G. & Wiersma, D. S. Anisotropic weak localization of light. Phys. Rev. Lett. 92, 033903 (2004).

    Article  ADS  Google Scholar 

  25. Koenderink, A. F., Megens, M., van Soest, G., Vos, W. L. & Lagendijk, A. Enhanced backscattering from photonic crystals. Phys. Lett. A 268, 104–111 (2000).

    Article  ADS  Google Scholar 

  26. Yoo, K. M., Tang, G. C. & Alfano, R. R. Coherent backscattering of light from biological tissues. Appl. Opt. 29, 3237–3239 (1990).

    Article  ADS  Google Scholar 

  27. Lenke, R. & Maret, G. Magnetic field effects on coherent backscattering of light. Eur. Phys. J. B 17, 171–185 (2000).

    Article  ADS  Google Scholar 

  28. Muskens, O. L., Venn, P., van der Beek, T. & Wellens, T. Partial nonlinear reciprocity breaking through ultrafast dynamics in a random photonic medium. Phys. Rev. Lett. 108, 223906 (2012).

    Article  ADS  Google Scholar 

  29. Yu, Z. & Fan, S. Complete optical isolation created by indirect interband photonic transitions. Nature Photon. 3, 91–94 (2009).

    Article  ADS  Google Scholar 

  30. Lagendijk, A., van Tiggelen, B. & Wiersma, D. S. Fifty years of Anderson localization. Phys. Today 62, 24–29 (August 2009).

    Article  Google Scholar 

  31. Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).

    Article  ADS  Google Scholar 

  32. Abrahams, E., Anderson, P. W., Licciardello, D. C. & Ramakrishnan, T. V. Scaling theory of localization: Absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42, 673–676 (1979).

    Article  ADS  Google Scholar 

  33. Beenakker, C. W. J. Random-matrix theory of quantum transport. Rev. Mod. Phys. 69, 731–808 (1997).

    Article  ADS  Google Scholar 

  34. Akkermans, E. & Montambaux, G. Mesoscopic Physics of Electrons and Photons (Cambridge, 2007).

    Book  MATH  Google Scholar 

  35. John, S. Electromagnetic absorption in a disordered medium near a photon mobility edge. Phys. Rev. Lett. 53, 2169–2172 (1984).

    Article  ADS  Google Scholar 

  36. Anderson, P. W. The question of classical localization: A theory of white paint? Phil. Mag. B 52, 505–509 (1985).

    Article  ADS  Google Scholar 

  37. Vollhardt, D. & Wölfle, P. Scaling equations from a self-consistent theory of Anderson localization. Phys. Rev. Lett. 48, 699–702 (1982).

    Article  ADS  Google Scholar 

  38. Wiersma, D. S., Bartolini, P., Lagendijk, A. & Righini, R. Localization of light in a disordered medium. Nature 390, 671–673 (1997).

    Article  ADS  Google Scholar 

  39. Störzer, M., Gross, P., Aegerter, C. M. & Maret, G. Observation of the critical regime near Anderson localization of light. Phys. Rev. Lett. 96, 063904 (2006).

    Article  ADS  Google Scholar 

  40. van der Beek, T., Barthelemy, P., Johnson, P. M., Wiersma, D. S. & Lagendijk, A. Light transport through disordered layers of dense gallium arsenide submicron particles. Phys. Rev. B 85, 115401 (2012).

    Article  ADS  Google Scholar 

  41. Bührer, W., Sperling, T., Gentilini, S., Aegerter, C. M. & Maret, G. Spectrally resolved time-of-flight measurements near Anderson localization. Poster at Mesoscopic Physics in Complex Media Conference, Cargèse, France (2010).

  42. Sperling, T., Bührer, W., Aegerter, C. M. & Maret, G. Direct determination of the transition to localization of light in three dimensions. Nature Photon. 7, 48–52 (2013).

    Article  ADS  Google Scholar 

  43. Mascheck, M. et al. Observing the localization of light in space and time by ultrafast second-harmonic microscopy. Nature Photon. 6, 293–298 (2012).

    Article  ADS  Google Scholar 

  44. Topolancik, J., Ilic, B. & Vollmer, F. Experimental observation of strong photon localization in disordered photonic crystal waveguides. Phys. Rev. Lett. 99, 253901 (2007).

    Article  ADS  Google Scholar 

  45. Bertolotti, J., Gottardo, S., Wiersma, D. S., Ghulinyan, M. & Pavesi, L. Optical necklace states in Anderson localized 1D systems. Phys. Rev. Lett. 94, 113903 (2005).

    Article  ADS  Google Scholar 

  46. Sebbah, P., Hu, B., Klosner, J. M. & Genack, A. Z. Extended quasimodes within nominally localized random waveguides. Phys. Rev. Lett. 96, 183902 (2006).

    Article  ADS  Google Scholar 

  47. Pendry, J. B. Quasi-extended electron-states in strongly disordered systems. J. Phys. C 20, 733–742 (1987).

    Article  ADS  Google Scholar 

  48. Tartakovskii, A. V. et al. Hopping conductivity of metal-semiconductor metal contacts. Sov. Phys. Semicond. 21, 370–373 (1987).

    Google Scholar 

  49. Barthelemy, P. et al. Optical switching by capillary condensation. Nature Photon. 1, 172–175 (2007).

    Article  ADS  Google Scholar 

  50. Chabanov, A. A., Stoytchev, M. & Genack, A. Z. Statistical signatures of photon localization. Nature 404, 850–853 (2000).

    Article  ADS  Google Scholar 

  51. Schwartz, T., Bartal, G., Fishman, S. & Segev, M. Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007).

    Article  ADS  Google Scholar 

  52. de Raedt, H., Lagendijk, A. & de Vries, P. Transverse localization of light. Phys. Rev. Lett. 62, 47–50 (1989).

    Article  ADS  Google Scholar 

  53. Levi, L. et al. Disorder-enhanced transport in photonic quasicrystals. Science 332, 1541–1544 (2011).

    Article  ADS  Google Scholar 

  54. Vardeny, Z. V., Nahata, A. & Agrawal, A. Optics of photonic quasicrystals. Nature Photon. 7, 177–187.

  55. Dalichaouch, R., Armstrong, J. P., Schultz, S., Platzman, P. M. & McCall, S. L. Microwave localization by 2-dimensional random scattering. Nature 354, 53–55 (1991).

    Article  ADS  Google Scholar 

  56. Laurent, D., Legrand, O., Sebbah, P., Vanneste, C. & Mortessagne, F. Localized modes in a finite-size open disordered microwave cavity. Phys. Rev. Lett. 99, 253902 (2007).

    Article  ADS  Google Scholar 

  57. Riboli, F. et al. Anderson localization of near-visible light in two dimensions. Opt. Lett. 36, 127–129 (2011).

    Article  ADS  Google Scholar 

  58. Trompeter, H. et al. Bloch oscillations and Zener tunneling in two-dimensional photonic lattices. Phys. Rev. Lett. 96, 053903 (2006).

    Article  ADS  Google Scholar 

  59. Labonté, L., Vanneste, C. & Sebbah, P. Localized mode hybridization by fine tuning of two-dimensional random media. Opt. Lett. 37, 1946–1948 (2012).

    Article  ADS  Google Scholar 

  60. Notomi, M., Suzuki, H., Tamamura, T. & Edagawa, K. Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice. Phys. Rev. Lett. 92, 123906 (2004).

    Article  ADS  Google Scholar 

  61. Dal Negro, L. & Boriskina, S. V. Deterministic aperiodic nanostructures for photonics and plasmonics applications. Las. Photon. Rev. 6, 178–218 (2011).

    Article  ADS  Google Scholar 

  62. Vynck, K., Burresi, M., Riboli, F. & Wiersma, D. S. Photon management in two-dimensional disordered media. Nature Mater. 11, 1017–1022 (2012).

    Article  ADS  Google Scholar 

  63. Kelzenberg, M. D. et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nature Mater. 9, 239–244 (2010).

    Article  ADS  Google Scholar 

  64. Spinelli, P., Verschuuren, M. & Polman, A. Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators. Nat.Commun. 3, 692 (2012).

    Article  ADS  Google Scholar 

  65. Rockstuhl, C. et al. Comparison and optimization of randomly textured surfaces in thin-film solar cells. Opt. Express 18, A335–A341 (2010).

    Article  Google Scholar 

  66. Wang, J. & Genack, A. Transport through modes in random media. Nature 471, 345–348 (2011).

    Article  ADS  Google Scholar 

  67. Skipetrov, S. E. & van Tiggelen, B. A. Dynamics of Anderson localization in open 3D media. Phys. Rev. Lett. 96, 043902 (2006).

    Article  ADS  Google Scholar 

  68. Payne, B., Yamilov, A. & Skipetrov, S. E. Anderson localization as position-dependent diffusion in disordered waveguides. Phys. Rev. B 82, 024205 (2010).

    Article  ADS  Google Scholar 

  69. Noginov, M. Solid-State Random Lasers (Springer, 2005).

    Google Scholar 

  70. Wiersma, D. S. The physics and applications of random lasers. Nature Phys. 4, 359–367 (2008).

    Article  ADS  Google Scholar 

  71. Graydon, O. Random thoughts. Nature Photon. 7, 164–165.

  72. Markushev, V. M., Zolin, V. F. & Briskina, C. M. Powder laser. Zh. Prikl. Spektrosk. 45, 847–850 (1986).

    Google Scholar 

  73. Lawandy, N. M., Balachandran, R. M., Gomes, A. S. L. & Sauvain, E. Laser action in strongly scattering media. Nature 368, 436–438 (1994).

    Article  ADS  Google Scholar 

  74. Cao, H. et al. Random laser action in semiconductor powder. Phys. Rev. Lett. 82, 2278–2281 (1999).

    Article  ADS  Google Scholar 

  75. Florescu, L. & John, S. Photon statistics and coherence in light emission from a random laser. Phys. Rev. Lett. 93, 013602 (2004).

    Article  ADS  Google Scholar 

  76. Cao, H., Ling, Y., Xu, J. Y., Cao, C. Q. & Kumar, P. Photon statistics of random lasers with resonant feedback. Phys. Rev. Lett. 86, 4524–4527 (2001).

    Article  ADS  Google Scholar 

  77. Cao, H. et al. Spatial confinement of laser light in active random media. Phys. Rev. Lett. 84, 5584–5587 (2000).

    Article  ADS  Google Scholar 

  78. Mujumdar, S., Ricci, M., Torre, R. & Wiersma, D. S. Amplified extended modes in random lasers. Phys. Rev. Lett. 93, 053903 (2004).

    Article  ADS  Google Scholar 

  79. van der Molen, K. L., Tjerkstra, R. W., Mosk, A. P. & Lagendijk, A. Spatial extent of random laser modes. Phys. Rev. Lett. 98, 143901 (2007).

    Article  ADS  Google Scholar 

  80. Fallert, J. et al. Co-existence of strongly and weakly localized random laser modes. Nature Photon. 3, 279–282 (2009).

    Article  ADS  Google Scholar 

  81. Fujii, G. Study on low-threshold random lasing by means of finite element method PhD thesis, Nagoya Univ. (2011).

    Google Scholar 

  82. Stano, P. & Jacquod, P. Suppression of interactions in multimode random lasers in the Anderson localized regime. Nature Photon. 7, 66–71 (2013).

    Article  ADS  Google Scholar 

  83. Zhu, H. et al. Low-threshold electrically pumped random lasers. Adv. Mater. 22, 1877–1881 (2010).

    Article  Google Scholar 

  84. Leonetti, M., Conti, C. & Lopez, C. The mode-locking transition of random lasers. Nature Photon. 5, 615–617 (2011).

    Article  ADS  Google Scholar 

  85. Tiwari, A. K., Uppu, R. & Mujumdar, S. Aerosol-based coherent random laser. Opt. Lett. 37, 1053–1055 (2012).

    Article  ADS  Google Scholar 

  86. Song, Q. et al. Random lasing in bone tissue. Opt. Lett. 35, 1425–1427 (2010).

    Article  ADS  Google Scholar 

  87. Baudouin, Q., Mercadier, N., Guarrera, V., Guerin, W. & Kaiser, R. A cold-atom random laser. Preprint at http://arxiv.org/abs/1301.0522 (2013).

  88. Akkermans, E., Gero, A. & Kaiser, R. Photon localization and Dicke superradiance in atomic gases. Phys. Rev. Lett. 101, 103602 (2008).

    Article  ADS  Google Scholar 

  89. Akahane, Y., Asano, T., Song, B.-S. & Noda, S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2003).

    Article  ADS  Google Scholar 

  90. John, S. & Stephen, M. J. Wave propagation and localization in a long-range correlated random potential. Phys. Rev. B 28, 6358–6368 (1983).

    Article  ADS  Google Scholar 

  91. John, S. Electromagnetic absorption in a disordered medium near a photon mobility edge. Phys. Rev. Lett. 53, 2169 (1984).

    Article  ADS  Google Scholar 

  92. Koenderink, A. F., Lagendijk, A. & Vos, W. L. Optical extinction due to intrinsic structural variations of photonic crystals. Phys. Rev. B 72, 153102 (2005).

    Article  ADS  Google Scholar 

  93. Garcia, P. D. From photonic crystals to photonic glasses through disorder PhD thesis, Universidad Autonoma di Madrid (2008).

    Google Scholar 

  94. Conti, C. & Fratalocchi, A. Dynamic light diffusion, three-dimensional Anderson localization and lasing in inverted opals. Nature Phys. 4, 794–798 (2008).

    Article  ADS  Google Scholar 

  95. Molinari, D. & Fratalocchi, A. Route to strong localization of light: The role of disorder. Opt. Express 20, 18156–18164 (2012).

    Article  ADS  Google Scholar 

  96. Rojas-Ochoa, L. F., Mendez-Alcaraz, J. M., Sáenz, J. J., Schurtenberger, P. & Scheffold, F. Photonic properties of strongly correlated colloidal liquids. Phys. Rev. Lett. 93, 073903 (2004).

    Article  ADS  Google Scholar 

  97. Edagawa, K., Kanoko, S. & Notomi, M. Photonic amorphous diamond structure with a 3D photonic band gap. Phys. Rev. Lett. 100, 013901 (2008).

    Article  ADS  Google Scholar 

  98. Torquato, S. & Stillinger, F. H. Local density fluctuations, hyperuniformity, and order metrics. Phys. Rev. E 68, 041113 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  99. Florescu, M., Torquato, S. & Steinhardt, P. J. Designer disordered materials with large, complete photonic band gaps. Proc. Natl Acad. Sci. USA 106, 20658–20663 (2009).

    Article  ADS  Google Scholar 

  100. Aste, T. & Weaire, D. The Pursuit of Perfect Packing (IOP, 2000).

    Book  MATH  Google Scholar 

  101. Donev, A., Stillinger, F. H. & Torquato, S. Unexpected density fluctuations in jammed disordered sphere packings. Phys. Rev. Lett. 95, 090604 (2005).

    Article  ADS  Google Scholar 

  102. Haberko, J. & Scheffold, F. Fabrication of mesoscale polymeric templates for three-dimensional disordered photonic materials. Opt. Express 21, 1057–1065 (2013).

    Article  ADS  Google Scholar 

  103. Mishchenko, M. I., Travis, L. D. & Lacis, A. A. Scattering, Absorption, and Emission of Light by Small Particles Ch. 5 139–141 (Cambridge Univ., 2002).

    Google Scholar 

  104. Rockstuhl, C. & Lederer, F. Suppression of the local density of states in a medium made of randomly arranged dielectric spheres. Phys. Rev. B 79, 132202 (2009).

    Article  ADS  Google Scholar 

  105. García, P. D., Sapienza, R., Blanco, A. & López, C. Photonic glass: A novel random material for light. Adv. Mater. 19, 2597–2602 (2007).

    Article  Google Scholar 

  106. Gottardo, S. et al. Resonance-driven random lasing. Nature Photon. 2, 429–432 (2008).

    Article  Google Scholar 

  107. Whitney, H. M. et al. Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators. Science 323, 130–133 (2009).

    Article  ADS  Google Scholar 

  108. Vukusic, P. & Sambles, J. R. Photonic structures in biology. Nature 424, 852–855 (2003).

    Article  ADS  Google Scholar 

  109. Kinoshita, S., Yoshioka, S. & Miyazaki, J. Physics of structural colors. Rep. Prog. Phys. 71, 076401 (2008).

    Article  ADS  Google Scholar 

  110. Shawkey, M. D., Morehouse, N. I. & Vukusic, P. A protean palette: Colour materials and mixing in birds and butterflies. J. R. Soc. Interface 6, S221–S231 (2009).

    Google Scholar 

  111. Vignolini, S. et al. Pointillist structural color in Pollia fruit. Proc. Natl Acad. Sci. USA 109, 15712–15715 (2012).

    Article  ADS  Google Scholar 

  112. Vukusic, P., Hallam, B. & Noyes, J. Brilliant whiteness in ultrathin beetle scales. Science 315, 348 (2007).

    Article  ADS  Google Scholar 

  113. Yina, H. et al. Amorphous diamond-structured photonic crystal in the feather barbs of the scarlet macaw. Proc. Natl Acad. Sci. USA 109, 10798–10801 (2012).

    Article  ADS  Google Scholar 

  114. Noh, H. et al. Control of lasing in biomimetic structures with short-range order. Phys. Rev. Lett. 106, 183901 (2011).

    Article  ADS  Google Scholar 

  115. Shlesinger, M. F., Zaslavsky, G. M. & Klafter, J. Strange kinetics. Nature 363, 31–37 (1993).

    Article  ADS  Google Scholar 

  116. Viswanathan, G. M. et al. Optimizing the success of random searches. Nature 401, 911–914 (1999).

    Article  ADS  Google Scholar 

  117. Metzler, R. & Klafter, J. The random walk's guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339, 1–77 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  118. Barthelemy, P., Bertolotti, J. & Wiersma, D. S. A Levy flight for light. Nature 453, 495–498 (2008).

    Article  ADS  Google Scholar 

  119. Mercadier, N. et al. Levy flights of photons in hot atomic vapours. Nature Phys. 5, 602–605 (2009).

    Article  ADS  Google Scholar 

  120. Bertolotti, J., Vynck, K. & Wiersma, D. S. Multiple scattering of light in superdiffusive media. Phys. Rev. Lett. 105, 163902 (2010).

    Article  ADS  Google Scholar 

  121. Patra, M. On Quantum Optics of Random Media PhD thesis, Univ. Leiden (2000).

    Google Scholar 

  122. Lodahl, P. & Lagendijk, A. Transport of quantum noise through random media. Phys. Rev. Lett. 94, 153905 (2005).

    Article  ADS  Google Scholar 

  123. Balog, S., Zakharov, P., Scheffold, F. & Skipetrov, S. E. Photocount statistics in mesoscopic optics. Phys. Rev. Lett. 97, 103901 (2006).

    Article  ADS  Google Scholar 

  124. Smolka, S., Huck, A., Andersen, U. L., Lagendijk, A. & Lodahl, P. Observation of spatial quantum correlations induced by multiple scattering of nonclassical light. Phys. Rev. Lett. 102, 193901 (2009).

    Article  ADS  Google Scholar 

  125. Lahini, Y., Bromberg, Y., Christodoulides, D. N. & Silberberg, Y. Quantum correlations in two-particle Anderson localization. Phys. Rev. Lett. 105, 163905 (2010).

    Article  ADS  Google Scholar 

  126. Peeters, W. H., Moerman, J. J. D. & van Exter, M. P. Observation of two-photon speckle patterns. Phys. Rev. Lett. 104, 173601 (2010).

    Article  ADS  Google Scholar 

  127. Sapienza, L. et al. Cavity quantum electrodynamics with Anderson-localized modes. Science 327, 1352–1355 (2010).

    Article  ADS  Google Scholar 

  128. Reinhard, A. et al. Strongly correlated photons on a chip. Nature Photon. 6, 93–96 (2011).

    Article  ADS  Google Scholar 

  129. Lye, J. E. et al. Bose–Einstein condensate in a random potential. Phys. Rev. Lett. 95, 070401 (2005).

    Article  ADS  Google Scholar 

  130. Clement, D., Varon, A. F. & Hugbart, M. Suppression of transport of an interaction elongated Bose–Einstein condensate in a random potential. Phys. Rev. Lett. 95, 170409 (2005).

    Article  ADS  Google Scholar 

  131. Billy, J. et al. Direct observation of Anderson localization of matter-waves in a controlled disorder. Nature 453, 891–894 (2008).

    Article  ADS  Google Scholar 

  132. Roati, G. et al. Anderson localization of a non-interacting Bose–Einstein condensate. Nature 453, 895–898 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author thanks all individuals cited in this Review for their collaboration and sharing of material, and both current and former members of the optics of complex systems group at LENS for discussions. This work was supported by the European Network of Excellence on Nanophotonics for Energy Efficiency and ERC Advanced Grant PHOTBOTS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diederik S. Wiersma.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiersma, D. Disordered photonics. Nature Photon 7, 188–196 (2013). https://doi.org/10.1038/nphoton.2013.29

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.29

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing