Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Two-stage seeded soft-X-ray free-electron laser

Abstract

We report the first generation of coherent, tunable, variable-polarization, soft X-ray femtosecond pulses, generated by a seeded free-electron laser (FEL) operating in the fresh bunch, two-stage harmonic upshift configuration. Characterization of the radiation proves this FEL configuration can produce single-transverse-mode, narrow-spectral-bandwidth output pulses of several tens of microjoules energy and low pulse-to-pulse wavelength jitter at final wavelengths of 10.8 nm and below. The fresh bunch configuration enhances the FEL emission at high harmonic orders by avoiding a gain depression due to the energy spread induced by the first-stage FEL interaction. Coherent signals measured down to 4.3 nm suggest this configuration is directly scalable to photon energies that will enable scientific investigations below the carbon K-edge, including access to the L-edges of many magnetic materials, with an energy per pulse unlocking the gate for experiments in the soft X-ray region with close to Fourier-transform-limited pulses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Layout of FERMI's FEL-2 two-stage undulator line.
Figure 2: Second-stage spectral results.
Figure 3: Shot-to-shot FEL pulse energy fluctuations.

Similar content being viewed by others

References

  1. Ben-Zvi, I., Yang, K. M. & Yu, L. H. The ‘fresh-bunch’ technique in FELs. Nucl. Instrum. Methods Phys. Res. A 318, 726–729 (1992).

    Article  ADS  Google Scholar 

  2. Emma, P. et al. First lasing and operation of an angstrom-wavelength free-electron laser. Nature Photon. 4, 641–647 (2010).

    Article  ADS  Google Scholar 

  3. Ishikawa, T. et al. A compact X-ray free-electron laser emitting in the sub-angstrom region. Nature Photon. 6, 540–544 (2012).

    Article  ADS  Google Scholar 

  4. Ackermann, W. et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nature Photon. 1, 336–342 (2007).

    Article  ADS  Google Scholar 

  5. Feldhaus, J. FLASH, the first soft X-ray free electron laser (FEL) user facility. J. Phys. B 43, 194002 (2010).

    Article  ADS  Google Scholar 

  6. McNeil, B. W. J. & Thompson, N. R. X-ray free-electron lasers. Nature Photon. 4, 814–821 (2010).

    Article  ADS  Google Scholar 

  7. Madey, J. M. J. Stimulated emission of bremsstrahlung in a periodic magnetic field. J. Appl. Phys. 42, 1906–1913 (1971).

    Article  ADS  Google Scholar 

  8. Kondratenko, A. M. & Saldin, E. L. Generation of coherent radiation by a relativistic electron beam in an undulator. Partic. Accel. 10, 207–216 (1980).

    Google Scholar 

  9. Sprangle, P., Tang, C.-M. & Manheimer, W. M. Nonlinear theory of free-electron lasers and efficiency enhancement. Phys. Rev. A 21, 302–318 (1980).

    Article  ADS  Google Scholar 

  10. Haus, H. Noise in free-electron laser amplifier. IEEE J. Quantum Electron. 17, 1427–1435 (1981).

    Article  ADS  Google Scholar 

  11. Dattoli, G., Marino, A., Renieri, A. & Romanelli, F. Progress in the Hamiltonian picture of the free electron laser. IEEE J. Quantum Electron. QE-17, 1371–1387 (1981).

    Article  ADS  Google Scholar 

  12. Bonifacio, R., Pellegrini, C. & Narducci, L. M. Collective instabilities and high-gain regime in a free-electron laser. Opt. Commun. 50, 373–378 (1984).

    Article  ADS  Google Scholar 

  13. Amann, J. et al. Demonstration of self-seeding in a hard X-ray free-electron laser. Nature Photon. 6, 693–698 (2012).

    Article  ADS  Google Scholar 

  14. Geloni, G., Kocharyan, V. & Saldin, E. A novel self-seeding scheme for hard X-ray FELs. J. Mod. Opt. 58, 1391–1403 (2011).

    Article  ADS  Google Scholar 

  15. Dimauro, L. et al. First SASE and seeded FEL lasing of the NSLS DUV FEL at 266 and 400 nm. Nucl. Instrum. Methods Phys. Res. A 507, 15–18 (2003).

    Article  ADS  Google Scholar 

  16. Garzella, D. et al. Using VUV high-order harmonics generated in gas as a seed for a single pass FEL. Nucl. Instrum. Methods Phys. Res. A 528, 502–505 (2004).

    Article  ADS  Google Scholar 

  17. Lambert, G. et al. Injection of harmonics generated in gas in a free-electron laser providing intense and coherent extreme-ultraviolet light. Nature Phys. 4, 296–300 (2008).

    Article  Google Scholar 

  18. Togashi, T. et al. Extreme ultraviolet free electron laser seeded with high-order harmonic of Ti:sapphire laser. Opt. Express 19, 317–324 (2011).

    Article  ADS  Google Scholar 

  19. Boscolo, I. & Stagno, V. The converter and the transverse optical klystron. Il Nuovo Cimento B 58, 267–285 (1980).

    Article  ADS  Google Scholar 

  20. Girard, B. et al. Optical frequency multiplication by an optical klystron. Phys. Rev. Lett. 53, 2405–2408 (1984).

    Article  ADS  Google Scholar 

  21. Prazeres, R. et al. First production of vacuum-ultraviolet coherent light by frequency multiplication in a relativistic electron beam. Europhys. Lett. 4, 817–822 (1987).

    Article  ADS  Google Scholar 

  22. Barbini, R. et al. 80-nm FEL design in an oscillator amplifier configuration. in Prospects for a 1 Å Free-Electron Laser Workshop (ed. Gallardo, J. C.) BNL-52273 (BNL, 1990).

    Google Scholar 

  23. Bonifacio, R., De Salvo Souza, L., Pierini, P. & Scharlemann, E. Generation of XUV light by resonant frequency tripling in a two-wiggler FEL amplifier. Nucl. Instrum. Methods Phys. Res. A 296, 787–790 (1990).

    Article  ADS  Google Scholar 

  24. Yu, L. H. Generation of intense UV radiation by subharmonically seeded single-pass free-electron lasers. Phys. Rev. A 44, 5178 (1991).

    Article  ADS  Google Scholar 

  25. Yu, L. H. et al. High-gain harmonic-generation free-electron laser. Science 289, 932–934 (2000).

    Article  ADS  Google Scholar 

  26. Yu, L. H. et al. First ultraviolet high-gain harmonic-generation free-electron laser. Phys. Rev. Lett. 91, 074801 (2003).

    Article  ADS  Google Scholar 

  27. Labat, M. et al. High-gain harmonic-generation free-electron laser seeded by harmonics generated in gas. Phys. Rev. Lett. 107, 224801 (2011).

    Article  ADS  Google Scholar 

  28. Giannessi, L. et al. Superradiant cascade in a seeded free-electron laser. Phys. Rev. Lett. 110, 044801 (2013).

    Article  ADS  Google Scholar 

  29. Allaria, E. et al. Tunability experiments at the FERMI@Elettra free-electron laser. New J. Phys. 14, 113009 (2012).

    Article  ADS  Google Scholar 

  30. Allaria, E. et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nature Photon. 6, 699–704 (2012).

    Article  ADS  Google Scholar 

  31. Liu, B. et al. Demonstration of a widely-tunable and fully-coherent high-gain harmonic-generation free-electron laser. Phys. Rev. Spec. Top. Accel. Beams 16, 020704 (2013).

    Article  ADS  Google Scholar 

  32. Wu, J. & Yu, L. H. High gain harmonic generation X-ray free electron laser. Proceedings of the 2001 Particle Accelerator Conference WPPH108 (2001).

  33. Brefeld, W. et al. Study of the frequency multiplication process in a multistage HGHG FEL. Nucl. Instrum. Methods Phys. Res. A 483, 80–88 (2002).

    Article  ADS  Google Scholar 

  34. Saldin, E. L., Schneidmiller, E. A. & Yurkov, M. V. Study of a noise degradation of amplification process in a multistage HGHG FEL. Opt. Commun. 202, 169–187 (2002).

    Article  ADS  Google Scholar 

  35. Yu, L.-H. & Ben-Zvi, I. High-gain harmonic generation of soft X-rays with the ‘fresh bunch’ technique. Nucl. Instrum. Methods Phys. Res. A 393, 96–99 (1997).

    Article  ADS  Google Scholar 

  36. Bocchetta, C. J. et al. FERMI@Elettra FEL Conceptual Design Report (Sincrotrone Trieste, 2007).

    Google Scholar 

  37. Sasaki, S. Analyses for a planar variably-polarizing undulator. Nucl. Instrum. Methods Phys. Res. A 347, 83–86 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  38. Wang, X. J. et al. Efficiency and spectrum enhancement in a tapered free-electron laser amplifier. Phys. Rev. Lett. 103, 154801 (2009).

    Article  ADS  Google Scholar 

  39. Allaria, E. FEL commissioning at FERMI@Elettra. in 2011 FEL Conference WEOBl1 (2011).

  40. Giannessi, L. et al. High-order-harmonic generation and superradiance in a seeded free-electron laser. Phys. Rev. Lett. 108, 164801 (2012).

    Article  ADS  Google Scholar 

  41. De Ninno, G., Mahieu, B., Allaria, E., Giannessi, L. & Spampinati, S. Chirped seeded free-electron lasers: self-standing light sources for two-color pump-probe experiments. Phys. Rev. Lett. 110, 064801 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the FERMI engineering, technician, control and operator teams for their continuous support during the installation and commissioning of the FEL. The resources that made possible the construction of FERMI were obtained and managed by G. Comelli, A. Franciosi and C. Rizzuto. The authors also acknowledge the contributions of S. Milton, project director (2007–2010), who oversaw the final definition of the machine parameters and its physical realization; the advice and support of the FERMI Machine and Scientific Advisory Committees and consultants M. Cornacchia, W. Barletta, S. Tazzari and S. Biedron; and, finally, assistance from numerous individuals from sister FEL labs. This work was funded by the FERMI project of Elettra-Sincrotrone Trieste, partially supported by the Ministry of University and Research (grant nos FIRB-RBAP045JF2 and FIRB-RBAP06AWK3).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the commissioning and realization of the experiments. W.F. and L.G. oversaw the manuscript production, with the most significant text contributions provided by E.A. and E.F. (FEL and spectral data reduction), M.D. (laser systems), B.D. (undulators), G.P. and S.D.M. (linac and electron-beam phase spaces) and M.Z. (FEL optical diagnostics). E.A., L.F., G.D.N, F.P. and M.Z. carefully read and improved the final drafts. The FERMI project was coordinated by L.G. (physics), F.P. (user experiments), D.Z. (engineering and installation) and M.S. (project director, 2011–present).

Corresponding authors

Correspondence to W. M. Fawley or L. Giannessi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1048 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allaria, E., Castronovo, D., Cinquegrana, P. et al. Two-stage seeded soft-X-ray free-electron laser. Nature Photon 7, 913–918 (2013). https://doi.org/10.1038/nphoton.2013.277

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.277

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing