Wireless sub-THz communication system with high data rate


In communications, the frequency range 0.1–30 THz is essentially terra incognita. Recently, research has focused on this terahertz gap, because the high carrier frequencies promise unprecedented channel capacities1. Indeed, data rates of 100 Gbit s−1 were predicted2 for 2015. Here, we present, for the first time, a single-input and single-output wireless communication system at 237.5 GHz for transmitting data over 20 m at a data rate of 100 Gbit s−1. This breakthrough results from combining terahertz photonics and electronics, whereby a narrow-band terahertz carrier is photonically generated by mixing comb lines of a mode-locked laser in a uni-travelling-carrier photodiode. The uni-travelling-carrier photodiode output is then radiated over a beam-focusing antenna. The signal is received by a millimetre-wave monolithic integrated circuit comprising novel terahertz mixers and amplifiers. We believe that this approach provides a path to scale wireless communications to Tbit s−1 rates over distances of >1 km.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Prospective application scenario for a long-range, high-capacity wireless communication link at terahertz frequencies.
Figure 2: Optical spectra before the UTC-PD for photonic terahertz signal generation.
Figure 3: Transmission of multi-gigabit wireless signals with data rates up to 100 Gbit s−1 over distances of 5, 10, 20 and 40 m.
Figure 4: Optimum data transmission as a function of wireless transmission distance.


  1. 1

    Kleine-Ostmann, T. & Nagatsuma, T. A review on terahertz communications research. J. Infrared Millim. Terahertz Waves 32, 143–171 (2011).

    Article  Google Scholar 

  2. 2

    Tonouchi, M. Cutting-edge terahertz technology. Nature Photon. 1, 97–105 (2007).

    ADS  Article  Google Scholar 

  3. 3

    International Telcommunications Union. ITU Recommendation P.676-9, Attenuation by Atmospheric Gases (ITU, 2012).

  4. 4

    Su, K., Moeller, L., Barat, R. B. & Federici, J. F. Experimental comparison of performance degradation from terahertz and infrared wireless links in fog. J. Opt. Soc. Am. A 29, 179–184 (2012).

    ADS  Article  Google Scholar 

  5. 5

    Su, K., Moeller, L., Barat, R. B. & Federici, J. F. Experimental comparison of terahertz and infrared data signal attenuation in dust clouds. J. Opt. Soc. Am. A 29, 2360–2366 (2012).

    ADS  Article  Google Scholar 

  6. 6

    Kanno, A. et al. Optical and millimeter-wave radio seamless MIMO transmission based on a radio over fiber technology. Opt. Express 20, 29395–29403 (2012).

    ADS  Article  Google Scholar 

  7. 7

    Li, X. et al. Fiber-wireless transmission system of 108 Gb/s data over 80 km fiber and 2 × 2 multiple-input multiple-output wireless links at 100 GHz W-band frequency. Opt. Lett. 37, 5106–5108 (2012).

    ADS  Article  Google Scholar 

  8. 8

    Pang, X. et al. 100 Gbit/s hybrid optical fiber-wireless link in the W-band (75–110 GHz). Opt. Express 19, 24944–24949 (2011).

    ADS  Article  Google Scholar 

  9. 9

    Federici, J. & Moeller, L. Review of terahertz and subterahertz wireless communications. J. Appl. Phys. 107, 111101 (2010).

    Google Scholar 

  10. 10

    Song, H. J. & Nagatsuma, T. Present and future of terahertz communications. IEEE Trans. Terahertz Sci. Tech. 1, 256–263 (2011).

    ADS  Article  Google Scholar 

  11. 11

    Schneider, G. J., Murakowski, J. A., Schuetz, C. A., Shi, S. & Prather, D. W. Radiofrequency signal-generation system with over seven octaves of continuous tuning. Nature Photon. 7, 118–122 (2013).

    ADS  Article  Google Scholar 

  12. 12

    Stöhr, A. et al. Millimeter-wave photonic components for broadband wireless systems. IEEE Trans. Microwave Theory Tech. 58, 3071–3082 (2010).

    ADS  Article  Google Scholar 

  13. 13

    Lin, C.-T. et al. 31 Gbps RoF system employing adaptive bit-loading OFDM modulation at 60 GHz. in Proceedings of Optical Fiber Communication Conference, paper OWT7 (Optical Society of America, 2011).

    Google Scholar 

  14. 14

    Chien, H-C., Chowdhury, A., Jia, Z., Hsueh, Y-T. & Chang, G-K. 60 GHz millimeter-wave gigabit wireless services over long-reach passive optical network using remote signal regeneration and upconversion. Opt. Express 17, 3016–3024 (2009).

    ADS  Article  Google Scholar 

  15. 15

    Kanno, A. et al. 20-Gb/s QPSK W-band (75-110 GHz) wireless link in free space using radio-over-fiber technique. IEICE Electron. Express 8, 612–617 (2011).

    Article  Google Scholar 

  16. 16

    Kanno, A. et al. 40 Gb/s W-band (75-110 GHz) 16-QAM radio-over-fiber signal generation and its wireless transmission. Opt. Express 19, B56–B63 (2011).

    Article  Google Scholar 

  17. 17

    Hirata, A. et al. 120-GHz-band millimeter-wave photonic wireless link for 10-Gb/s data transmission. IEEE Trans. Microwave Theory Tech. 54, 1937–1944 (2006).

    ADS  Article  Google Scholar 

  18. 18

    Hirata, A. et al. Transmission characteristics of 120-GHz-band wireless link using radio-on-fiber technologies. J. Lightwave Technol. 26, 2338–2344 (2008).

    ADS  Article  Google Scholar 

  19. 19

    Song, H. J. et al. 8 Gbit/s wireless data transmission at 250 GHz. Electron. Lett. 45, 1121–1122 (2009).

    Article  Google Scholar 

  20. 20

    Song, H. J. et al. 24 Gbit/s data transmission in 300 GHz band for future terahertz communications. Electron. Lett. 48, 953–954 (2012).

    Article  Google Scholar 

  21. 21

    Lopez-Diaz, D. et al. A subharmonic chipset for gigabit communication around 240 GHz. Proceedings of IEEE International Microwave Symposium http://dx.doi.org/10.1109/MWSYM.2012.6258404 (2012).

  22. 22

    Lopez-Diaz, D. et al. A 240 GHz quadrature and transmitter for data transmission up to 40 Gbit/s. in Proceedings of European Microwave Integrated Circuits Conference, paper EuMC/EuMIC06-4 (IEEE, 2013).

    Google Scholar 

  23. 23

    Leuther, A. et al. Metamorphic HEMT technology for submillimeter-wave MMIC applications. in Proceedings of International Conference on Indium Phosphide & Related Materials, 1–6 (IEEE, 2010).

  24. 24

    Tessmann, A., Leuther, A., Massler, H. & Seelmann-Eggebert, M. A high gain 600 GHz amplifier TMIC using 35 nm metamorphic HEMT technology. in Proceedings of Compound Semiconductor Integrated Circuit Symposium, 1–4 (IEEE, 2012).

  25. 25

    Schmogrow, R. et al. Real-time software-defined multiformat transmitter generating 64 QAM at 28 GBd. IEEE Photon. Technol. Lett. 22, 1601–1603 (2010).

    ADS  Article  Google Scholar 

  26. 26

    Ito, H., Furuta, T., Muramoto, Y., Ito, T. & Ishibashi, T. Photonic millimetre- and sub-millimetrewave generation using J-band rectangular waveguide-output uni-travelling-carrier photodiode module. Electron. Lett. 42, 1424–1425 (2006).

    Article  Google Scholar 

  27. 27

    Ip, E., Lau, A. P. T., Barros, D. J. F. & Kahn, J. M. Coherent detection in optical fiber systems. Opt. Express 16, 753–791 (2008).

    ADS  Article  Google Scholar 

  28. 28

    Ly-Gagnon, D., Tsukamoto, S., Katoh, K. & Kikuchi, K. Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation. J. Lightwave Technol. 24, 12–21 (2006).

    ADS  Article  Google Scholar 

  29. 29

    Proakis, J. Digital Communications 3rd edn (McGraw-Hill, 2012).

    Google Scholar 

  30. 30

    Korn, D. et al. First monolithic GaAs IQ electro-optic modulator, demonstrated at 150 Gbit/s with 64-QAM. in Proceedings of Optical Fiber Communication Conference, postdeadline paper PDP5C.4 (Optical Society of America, 2013).

    Google Scholar 

  31. 31

    Fish, G. Heterogeneous photonic integration for microwave photonic applications. in Proceedings of Optical Fiber Communication Conference, paper OW3D.5 (Optical Society of America, 2013).

    Google Scholar 

  32. 32

    Schmogrow, R. et al. Error vector magnitude as a performance measure for advanced modulation formats. IEEE Photon. Technol. Lett. 24, 61–63 (2012); erratum 24, 2198 (2012).

    ADS  Article  Google Scholar 

  33. 33

    Chang, F., Onohara, K. & Mizuochi, T. Forward error correction for 100 G transport networks. IEEE Commun. Mag. 48, S48–S55 (2010).

    Article  Google Scholar 

  34. 34

    Hirata, A. et al. Low-phase noise photonic millimeter-wave generator using an AWG integrated with a 3-dB combiner. IEICE Trans. Electron. E88-C, 1458–1464 (2005).

    ADS  Article  Google Scholar 

Download references


The authors thank NTT Electronics (NEL) for providing the UTC-PD for this experiment, and W. Schroeder from the Karlsruhe Institute of Technology (KIT) for the artwork in Fig. 1. The authors also acknowledge support from the MILLILINK project (Millimeterwellen-Drahtlos-Links in optischen Kommunikationsnetzwerken) funded by the German Federal Ministry of Research and Education (BMBF; grant 01BP1023), the Karlsruhe School of Optics & Photonics (KSOP), the Helmholtz International Research School for Teratronics (HIRST) at the Karlsruhe Institute of Technology (KIT) and the Agilent University Relation Program.

Author information




S.K. developed the concept, designed and performed the experiments, implemented the photonic transmitter, characterized the MMIC receiver module, analysed the data and wrote the paper. D.L.-D. designed the MMIC receiver chip and characterized the MMIC receiver module. R.H. packaged the MMIC receiver chip and provided the horn antennas. A.T. simulated and designed the MMIC amplifiers. A.L. developed the 35 nm mHEMT MMIC technology. J.A., F.B., R.S., D.H. and R.P. assisted in performing the experiments and analysing the data. T.Z., C.K., W.F., O.A., J.L. and I.K. developed the concept and wrote the paper.

Corresponding authors

Correspondence to S. Koenig or W. Freude or J. Leuthold or I. Kallfass.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2343 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Koenig, S., Lopez-Diaz, D., Antes, J. et al. Wireless sub-THz communication system with high data rate. Nature Photon 7, 977–981 (2013). https://doi.org/10.1038/nphoton.2013.275

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing