Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses

Abstract

Dynamical systems based on the interplay of nonlinear feedback mechanisms are ubiquitous in nature1,2,3,4,5. Well-understood examples from photonics include mode locking6 and a broad class of fractal optics7, including self-similarity8. In addition to the fundamental interest in such systems, fascinating technical functionalities that are difficult or even impossible to achieve with linear systems can emerge naturally from them7 if the right control tools can be applied. Here, we demonstrate a method that exploits positive nonlocal feedback to initiate, and negative local feedback to regulate, the growth of ultrafast laser-induced metal–oxide nanostructures with unprecedented uniformity, at high speed, low cost and on non-planar or flexible surfaces. The nonlocal nature of the feedback allows us to stitch the nanostructures seamlessly, enabling coverage of indefinitely large areas with subnanometre uniformity in periodicity. We demonstrate our approach through the fabrication of titanium dioxide and tungsten oxide nanostructures, but it can also be extended to a large variety of other materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conceptual model.
Figure 2: Experimental set-up.
Figure 3: Nanostructure formation dynamics.
Figure 4: Examples of fabricated nanostructures.

Similar content being viewed by others

References

  1. Bhalla, U. S. & Iyengar, R. Emergent properties of networks of biological signaling pathways. Science 283, 381–387 (1999).

    Article  ADS  Google Scholar 

  2. Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  3. Ferrell, J. E. Jr. Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr. Opin. Cell Biol. 14, 140–148 (2002).

    Article  Google Scholar 

  4. Mandelbrot, B. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156, 636–638 (1967).

    Article  ADS  Google Scholar 

  5. Kitano, H. Biological robustness. Nature Rev. Genet. 5, 826–837 (2004).

    Article  Google Scholar 

  6. Haus, H. A. Theory of mode locking with a fast saturable absorber. J. Appl. Phys. 46, 3049–3058 (1975).

    Article  ADS  Google Scholar 

  7. Segev, M., Soljačić, M. & Dudley, J. M. Fractal optics and beyond. Nature Photon. 6, 209–210 (2012).

    Article  ADS  Google Scholar 

  8. Dudley, J. M., Finot, C., Richardson, D. J. & Millot, G. Self-similarity in ultrafast nonlinear optics. Nature Phys. 3, 597–603 (2007).

    Article  ADS  Google Scholar 

  9. Barth, J. V., Costantini, G. & Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 437, 671–679 (2005).

    Article  ADS  Google Scholar 

  10. Ito, T. & Okazaki, S. Pushing the limits of lithography. Nature 406, 1027–1031 (2000).

    Article  Google Scholar 

  11. Sreekanth, K. V., Chua, J. K. & Murukeshan, V. M. Interferometric lithography for nanoscale feature patterning: a comparative analysis between laser interference, evanescent wave interference, and surface plasmon interference. Appl. Opt. 49, 6710–6717 (2010).

    Article  ADS  Google Scholar 

  12. Whitesides, G. M. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    Article  ADS  Google Scholar 

  13. Gattass, R. R. & Mazur, E. Femtosecond laser micromachining in transparent materials. Nature Photon. 2, 219–225 (2008).

    Article  ADS  Google Scholar 

  14. Birnbaum, M. Semiconductor surface damage produced by ruby lasers. J. Appl. Phys. 36, 3688–3689 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  15. Temple, P. & Soileau, M. Polarization charge model for laser-induced ripple patterns in dielectric materials. IEEE J. Quantum Electron. 17, 2067–2072 (1981).

    Article  ADS  Google Scholar 

  16. Sipe, J. E., Young, J. F., Preston, J. S. & van Driel, H. M. Laser-induced periodic surface structure I: theory. Phys. Rev. B 27, 1141–1154 (1983).

    Article  ADS  Google Scholar 

  17. Bonch-Bruevich, A. M., Libenson, M. N., Makin, V. S. & Trubaev, V. V. Surface electromagnetic waves in optics. Opt. Eng. 31, 718–730 (1991).

    Article  ADS  Google Scholar 

  18. Sun, Q., Liang, F., Vallée, R. & Chin, S. L. Nanograting formation on the surface of silica glass by scanning focused femtosecond laser pulses. Opt. Lett. 33, 2713–2715 (2008).

    Article  ADS  Google Scholar 

  19. Bonse, J., Krüger, J., Höhm, S. & Rosenfeld, A. Femtosecond laser-induced periodic surface structures. J. Laser Appl. 24, 042006 (2012).

    Article  ADS  Google Scholar 

  20. Kalaycioglu, H., Oktem, B., Şenel, Ç., Paltani, P. P. & Ilday, F. Ö. Microjoule-energy, 1 MHz repetition rate pulses from all-fiber-integrated nonlinear chirped-pulse amplifier. Opt. Lett. 35, 959–961 (2010).

    Article  ADS  Google Scholar 

  21. Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205–213 (2010).

    Article  ADS  Google Scholar 

  22. Srituravanich, W., Fang, N., Sun, C., Luo, Q. & Zhang, X. Plasmonic nanolithography. Nano Lett. 4, 1085–1088 (2004).

    Article  ADS  Google Scholar 

  23. Konstantatos, G. & Sargent, E. H. Nanostructured materials for photon detection. Nature Nanotech. 5, 391–400 (2010).

    Article  ADS  Google Scholar 

  24. Juan, M. L., Righini, M. & Quidant, R. Plasmon nano-optical tweezers. Nature Photon. 5, 349–356 (2011).

    Article  ADS  Google Scholar 

  25. Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

    Article  ADS  Google Scholar 

  26. Didiot, C., Pons, S., Kierren, B., Fagot-Revurat, Y. & Malterre, D. Nanopatterning the electronic properties of gold surfaces with self-organized superlattices of metallic nanostructures. Nature Nanotech. 2, 617–621 (2007).

    Article  ADS  Google Scholar 

  27. Flemming, R. G., Murphy, C. J., Abrams, G. A., Goodman, S. L. & Nealey, P. F. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials 20, 573–588 (1999).

    Article  Google Scholar 

  28. Kang, T.-S., Smith, A. P., Taylor, B. E. & Durstock, M. F. Fabrication of highly-ordered TiO2 nanotube arrays and their use in dye-sensitized solar cells. Nano Lett. 9, 601–606 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Scientific and Technological Research Council of Turkey (TÜBİTAK; grant nos 106G089 and 209T058) and a Distinguished Young Scientist award from the Turkish Academy of Sciences (TÜBA). The authors thank G. Ertaş for help with Raman spectroscopy.

Author information

Authors and Affiliations

Authors

Contributions

B.Ö. and I.P. conducted the experiments and analysed the data. I.P., S.I. and F.Ö.I. developed the theoretical model and I.P. performed the simulations. I.P., B.Ö., A.R., S.Y. and M.E. constructed the laser microscope set-up. H.K., B.Ö. and A.R. constructed the laser system.

Corresponding author

Correspondence to F. Ömer Ilday.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4789 kb)

Supplementary movie

Supplementary movie (MOV 1239 kb)

Supplementary movie

Supplementary movie (MOV 4686 kb)

Supplementary movie

Supplementary movie (MOV 1761 kb)

Supplementary movie

Supplementary movie (MOV 4107 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Öktem, B., Pavlov, I., Ilday, S. et al. Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses. Nature Photon 7, 897–901 (2013). https://doi.org/10.1038/nphoton.2013.272

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.272

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing