Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Silicon coupled with plasmon nanocavities generates bright visible hot luminescence

Abstract

To address the limitations in device speed and performance in silicon-based electronics, there have been extensive studies on silicon optoelectronics with a view to achieving ultrafast optical data processing1,2,3. The biggest challenge has been to develop an efficient silicon-based light source, because the indirect bandgap of silicon gives rise to extremely low emission efficiencies. Although light emission in quantum-confined silicon at sub-10 nm length scales has been demonstrated4,5,6,7, there are difficulties in integrating quantum structures with conventional electronics8,9. It is desirable to develop new concepts to obtain emission from silicon at length scales compatible with current electronic devices (20–100 nm), which therefore do not utilize quantum-confinement effects. Here, we demonstrate an entirely new method to achieve bright visible light emission in ‘bulk-sized’ silicon coupled with plasmon nanocavities at room temperature, from non-thermalized carrier recombination. The highly enhanced emission (internal quantum efficiency of >1%) in plasmonic silicon, together with its size compatibility with current silicon electronics, provides new avenues for developing monolithically integrated light sources on conventional microchips.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hot luminescence from silicon coupled to a plasmon nanocavity.
Figure 2: Resonantly enhanced hot luminescence in plasmonic silicon.
Figure 3: Polarization-selective spectra for resonant and non-resonant plasmonic silicon devices.

Similar content being viewed by others

References

  1. Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005).

    Article  ADS  Google Scholar 

  2. Liang, D. & Bowers, J. E. Recent progress in lasers on silicon. Nature Photon. 4, 511–517 (2010).

    Article  ADS  Google Scholar 

  3. Fan, L. et al. An all-silicon passive optical diode. Science 335, 447–450 (2012).

    Article  ADS  Google Scholar 

  4. Cullis, A. G. & Canham, L. T. Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature 353, 335–338 (1991).

    Article  ADS  Google Scholar 

  5. Wilson, W. L., Szajowski, P. F. & Brus, L. E. Quantum confinement in size-selected, surface-oxidized silicon nanocrystals. Science 262, 1242–1244 (1993).

    Article  ADS  Google Scholar 

  6. Brongersma, M. L. et al. Tuning the emission wavelength of Si nanocrystals in SiO2 by oxidation. Appl. Phys. Lett. 72, 2577–2579 (1998).

    Article  ADS  Google Scholar 

  7. Walavalkar, S. S. et al. Tunable visible and near-IR emission from sub-10 nm etched single-crystal Si nanopillars. Nano Lett. 10, 4423–4428 (2010).

    Article  ADS  Google Scholar 

  8. Park, N. M., Kim, T. S. & Park, S. J. Band gap engineering of amorphous silicon quantum dots for light-emitting diodes. Appl. Phys. Lett. 78, 2575–2577 (2001).

    Article  ADS  Google Scholar 

  9. Walters, R. J., Bourianoff, G. I. & Atwater, H. A. Field-effect electroluminescence in silicon nanocrystals. Nature Mater. 4, 143–146 (2005).

    Article  ADS  Google Scholar 

  10. Schmidt, P., Berndt, R. & Vexler, M. I. Ultraviolet light emission from Si in a scanning tunneling microscope. Phys. Rev. Lett. 99, 246103 (2007).

    Article  ADS  Google Scholar 

  11. De Boer, W. D. A. M. et al. Red spectral shift and enhanced quantum efficiency in phonon-free photoluminescence from silicon nanocrystals. Nature Nanotech. 5, 878–884 (2010).

    Article  ADS  Google Scholar 

  12. Goldman, J. R. & Prybyla, J. A. Ultrafast dynamics of laser-excited electron distributions in silicon. Phys. Rev. Lett. 72, 1364–1367 (1994).

    Article  ADS  Google Scholar 

  13. Sabbah, A. J. & Riffe, D. M. Femtosecond pump–probe reflectivity study of silicon carrier dynamics. Phys. Rev. B 66, 165217 (2002).

    Article  ADS  Google Scholar 

  14. Prokofiev, A. A. et al. Direct bandgap optical transitions in Si nanocrystals. JETP Lett. 90, 758–762 (2009).

    Article  ADS  Google Scholar 

  15. Fujita, M., Tanaka, Y. & Noda, S. Light emission from silicon in photonic crystal nanocavity. IEEE J. Sel. Top. Quantum Electron. 14, 1090–1097 (2008).

    Article  ADS  Google Scholar 

  16. Lo Savio, R. et al. Room-temperature emission at telecom wavelengths from silicon photonic crystal nanocavities. Appl. Phys. Lett. 98, 201106 (2011).

    Article  ADS  Google Scholar 

  17. Cho, C. H. et al. Tailoring hot-exciton emission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons. Nature Mater. 10, 669–675 (2011).

    Article  ADS  Google Scholar 

  18. Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  19. Ryu, H. Y. & Notomi, M. Enhancement of spontaneous emission from the resonant modes of a photonic crystal slab single-defect cavity. Opt. Lett. 28, 2390–2392 (2003).

    Article  ADS  Google Scholar 

  20. Baba, T. & Sano, D. Low-threshold lasing and Purcell effect in microdisk lasers at room temperature. IEEE J. Sel. Top. Quantum Electron. 9, 1340–1346 (2003).

    Article  ADS  Google Scholar 

  21. Englund, D. et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys. Rev. Lett. 95, 013904 (2005).

    Article  ADS  Google Scholar 

  22. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    Article  ADS  Google Scholar 

  23. Kittel, C. Introduction to Solid State Physics 106–129 (Wiley, 2005).

    Google Scholar 

  24. Wei, S. & Chou, M. Y. Phonon dispersion of silicon and germanium from first-principles calculations. Phys. Rev. B 50, 2221–2226 (1994).

    Article  ADS  Google Scholar 

  25. Chelikowsky, J. R. & Cohen, M. L. Electronic structure of silicon. Phys. Rev. B 10, 5095–5107 (1974).

    Article  ADS  Google Scholar 

  26. Racek, W., Bauer, G. & Kahlert, H. Dynamic measurement of hot-electron magnetophonon effect in n-InSb at 11 K. Phys. Rev. Lett. 31, 301–304 (1973).

    Article  ADS  Google Scholar 

  27. Temple, P. A. & Hathaway, C. E. Multiphonon Raman spectrum of silicon. Phys. Rev. B 7, 3685–3697 (1973).

    Article  ADS  Google Scholar 

  28. Andreani, L. C., Panzarini, G. & Gérard, J. M. Strong-coupling regime for quantum boxes in pillar microcavities: theory. Phys. Rev. B 60, 13276–13279 (1999).

    Article  ADS  Google Scholar 

  29. Johnson, P. B. & Christy, R. W. Optical constants of noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    Article  ADS  Google Scholar 

  30. Palik, E. D. Handbook of Optical Constants of Solids (Academic, 1998).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the US Army Research Office (grant nos W911NF-09-1-0477 and W911NF-11-1-0024) and the National Institutes of Health through the NIH Director's New Innovator Award Program (1-DP2-7251-01). C.O.A. is supported by the US Department of Defense, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship. The authors thank A. Boukai (Michigan) and J. Spanier (Drexel) for providing vapour-liquid-solid (VLS)-grown silicon nanowire substrates.

Author information

Authors and Affiliations

Authors

Contributions

C-H.C. and R.A. developed the concept and design of the devices. C-H.C. fabricated the devices and performed optical measurements. C.O.A. performed the numerical simulations, fabricated devices and performed optical measurements at 532 nm excitation. J.P. fabricated and carried out the emission experiments on bowtie structures. C-H.C., C.O.A. and R.A. analysed the results and wrote the manuscript.

Corresponding author

Correspondence to Ritesh Agarwal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3878 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, CH., Aspetti, C., Park, J. et al. Silicon coupled with plasmon nanocavities generates bright visible hot luminescence. Nature Photon 7, 285–289 (2013). https://doi.org/10.1038/nphoton.2013.25

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.25

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing