Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals

Abstract

Photonic crystals and metamaterials have emerged as two classes of tailorable materials that enable the precise control of light. Plasmonic crystals, which can be thought of as photonic crystals fabricated from plasmonic materials, Bragg scatter incident electromagnetic waves from a repeated unit cell. However, plasmonic crystals, like metamaterials, are composed of subwavelength unit cells. Here, we study terahertz plasmonic crystals of several periods in a two-dimensional electron gas. This plasmonic medium is both extremely subwavelength (λ/100) and reconfigurable through the application of voltages to metal electrodes. Weakly localized crystal surface states known as Tamm states are observed. By introducing an independently controlled plasmonic defect that interacts with the Tamm states, we demonstrate a frequency-agile electromagnetically induced transparency phenomenon. The observed 50% in situ tuning of the plasmonic crystal band edges should be realizable in materials such as graphene to actively control plasmonic crystal dispersion in the infrared.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Integrated plasmonic crystal structures.
Figure 2: Tunable plasmonic crystal spectrum.
Figure 3: Tamm states in plasmonic crystal defect structures.
Figure 4: Induced transparency in the first plasmonic bandgap.

Similar content being viewed by others

References

  1. Yablonovitch, E., Gmitter, T. J. & Leung, K. M. Photonic band structure: the face-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett. 67, 2295–2298 (1991).

    Article  ADS  Google Scholar 

  2. Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).

    Article  ADS  Google Scholar 

  3. Baba, T. Slow light in photonic crystals. Nature Photon. 2, 465–473 (2008).

    Article  ADS  Google Scholar 

  4. Berrier, A. et al. Negative refraction at infrared wavelengths in a two-dimensional photonic crystal. Phys. Rev. Lett. 93, 073902 (2004).

    Article  ADS  Google Scholar 

  5. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    Article  ADS  Google Scholar 

  6. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).

    Article  ADS  Google Scholar 

  7. Allen, S. J., Tsui, D. C. & Logan, R. A. Observation of the two-dimensional plasmon in silicon inversion layers. Phys. Rev. Lett. 38, 980–983 (1977).

    Article  ADS  Google Scholar 

  8. Dyakonov, M. I. & Shur, M. S. Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Trans. Electron Dev. 43, 380–387 (1996).

    Article  ADS  Google Scholar 

  9. Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotech. 6, 630–634 (2011).

    Article  ADS  Google Scholar 

  10. Yan, H. et al. Tunable infrared plasmonic devices using graphene/insulator stacks. Nature Nanotech. 7, 330–334 (2012).

    Article  ADS  Google Scholar 

  11. Grigorenko, A. N., Polini, M. & Novoselov, K. S. Graphene plasmonics. Nature Photon. 6, 749–758 (2012).

    Article  ADS  Google Scholar 

  12. Mackens, U., Heitmann, D., Prager, L., Kotthaus, J. P. & Beinvogl, W. Minigaps in the plasmon dispersion of a two-dimensional electron gas with spatially modulated charge density. Phys. Rev. Lett. 53, 1485–1488 (1984).

    Article  ADS  Google Scholar 

  13. Muravev, V. M. et al. Tunable plasmonic crystals for edge magnetoplasmons of a two-dimensional electron system. Phys. Rev. Lett. 101, 216801 (2008).

    Article  ADS  Google Scholar 

  14. Dyer, G. C. et al. Inducing an incipient terahertz finite plasmonic crystal in coupled two dimensional plasmonic cavities. Phys. Rev. Lett. 109, 126803 (2012).

    Article  ADS  Google Scholar 

  15. Andress, W. F. et al. Ultra-subwavelength two-dimensional plasmonic circuits. Nano Lett. 12, 2272–2277 (2012).

    Article  ADS  Google Scholar 

  16. Burke, P. J., Spielman, I. B., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. High frequency conductivity of the high-mobility two-dimensional electron gas. Appl. Phys. Lett. 76, 745–747 (2000).

    Article  ADS  Google Scholar 

  17. Rana, F. Graphene terahertz plasmon oscillators. IEEE Trans. Nanotechnol. 7, 91–99 (2008).

    Article  ADS  Google Scholar 

  18. Staffaroni, M., Conway, J., Vedantam, S., Tang, J. & Yablonovitch, E. Circuit analysis in metal-optics. Phot. Nano. Fund. Appl. 10, 166–176 (2012).

    Article  Google Scholar 

  19. Aizin, G. R. & Dyer, G. C. Transmission line theory of collective plasma excitations in periodic two-dimensional electron systems: finite plasmonic crystals and Tamm states. Phys. Rev. B 86, 235316 (2012).

    Article  ADS  Google Scholar 

  20. Shvets, G. & Urzhumov, Y. A. Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances. Phys. Rev. Lett. 93, 243902 (2004).

    Article  ADS  Google Scholar 

  21. Lemoult, F., Lerosey, G., de Rosny, J. & Fink, M. Resonant metalenses for breaking the diffraction barrier. Phys. Rev. Lett. 104, 203901 (2010).

    Article  ADS  Google Scholar 

  22. Lemoult, F., Fink, M. & Lerosey, G. Acoustic resonators for far-field control of sound on a subwavelength scale. Phys. Rev. Lett. 107, 064301 (2011).

    Article  ADS  Google Scholar 

  23. Liu, Z. et al. Locally resonant sonic materials. Science 289, 1734–1736 (2000).

    Article  ADS  Google Scholar 

  24. Davanco, M., Urzhumov, Y. & Shvets, G. The complex Bloch bands of a 2D plasmonic crystal displaying isotropic negative refraction. Opt. Express 15, 9681–9691 (2007).

    Article  ADS  Google Scholar 

  25. Tamm, I. E. Uber eine mogliche Art der Elektronenbindung an Kristalloberflachen. Phys. Z. Sowjetunion 1, 733–736 (1932).

    MATH  Google Scholar 

  26. Shaner, E. A. et al. Far-infrared spectrum analysis using plasmon modes in a quantum-well transistor. IEEE Photon. Technol. Lett. 18, 1925–1927 (2006).

    Article  ADS  Google Scholar 

  27. Davoyan, A. R., Popov, V. V. & Nikitov, S. A. Tailoring terahertz near-field enhancement via two-dimensional plasmons. Phys. Rev. Lett. 108, 127401 (2012).

    Article  ADS  Google Scholar 

  28. Smith, D. R., Vier, D. C., Koschny, T. & Soukoulis, C. M. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 71, 036617 (2005).

    Article  ADS  Google Scholar 

  29. Simovski, C. R. Bloch material parameters of magneto-dielectric metamaterials and the concept of Bloch lattices. Metamaterials 1, 62–80 (2007).

    Article  ADS  Google Scholar 

  30. Yoon, H., Yeung, K. Y. M., Umansky, V. & Ham, D. A Newtonian approach to extraordinarily strong negative refraction. Nature 488, 65–69 (2012).

    Article  ADS  Google Scholar 

  31. Ohno, H. et al. Observation of ‘Tamm states’ in superlattices. Phys. Rev. Lett. 64, 2555–2558 (1990).

    Article  ADS  Google Scholar 

  32. Goto, T. et al. Optical Tamm states in one-dimensional magnetophotonic structures. Phys. Rev. Lett. 101, 113902 (2008).

    Article  ADS  Google Scholar 

  33. Sasin, M. E. et al. Tamm plasmon polaritons: slow and spatially compact light. Appl. Phys. Lett. 92, 251112 (2008).

    Article  ADS  Google Scholar 

  34. Muravev, V. M. & Kukushkin, I. V. Plasmonic detector/spectrometer of subterahertz radiation based on two-dimensional electron system with embedded defect. Appl. Phys. Lett. 100, 082102 (2012).

    Article  ADS  Google Scholar 

  35. Zhang, S., Genov, D. A., Wang, Y., Liu, M. & Zhang, X. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett. 101, 047401 (2008).

    Article  ADS  Google Scholar 

  36. Liu, N. et al. Plasmonic analogue of electromagnetically induced transparency at the drude damping limit. Nature Mater. 8, 758–762 (2009).

    Article  ADS  Google Scholar 

  37. Tassin, P., Zhang, L., Koschny, T., Economou, E. N. & Soukoulis, C. M. Low-loss metamaterials based on classical electromagnetically induced transparency. Phys. Rev. Lett. 102, 053901 (2009).

    Article  ADS  Google Scholar 

  38. Luk'yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nature Mater. 9, 707–715 (2010).

    Article  ADS  Google Scholar 

  39. Fowler, R. H. Notes on some electronic properties of conductors and insulators. Proc. R. Soc. Lond. A 141, 56–71 (1933).

    Article  ADS  Google Scholar 

  40. Shockley, W. On the surface states associated with a periodic potential. Phys. Rev. 56, 317–323 (1939).

    Article  ADS  Google Scholar 

  41. Totsuka, K., Kobayashi, N. & Tomita, M. Slow light in coupled-resonator-induced transparency. Phys. Rev. Lett. 98, 213904 (2007).

    Article  ADS  Google Scholar 

  42. Vakil, A. & Engheta, N. Transformation optics using graphene. Science 332, 1291–1294 (2011).

    Article  ADS  Google Scholar 

  43. Muravjov, A. V. et al. Temperature dependence of plasmonic terahertz absorption in grating-gate gallium-nitride transistor structures. Appl. Phys. Lett. 96, 042105 (2010).

    Article  ADS  Google Scholar 

  44. Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    Article  ADS  Google Scholar 

  45. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    Article  ADS  Google Scholar 

  46. Sydoruk, O., Syms, R. R. A. & Solymar, L. Distributed gain in plasmonic reflectors and its use for terahertz generation. Opt. Express 20, 19618–19627 (2012).

    Article  ADS  Google Scholar 

  47. Dyer, G. C. et al. Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity. Appl. Phys. Lett. 100, 083506 (2012).

    Article  ADS  Google Scholar 

  48. Lisauskas, A. et al. Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors. J. Appl. Phys. 105, 114511 (2009).

    Article  ADS  Google Scholar 

  49. Preu, S. et al. Terahertz detection by a homodyne field effect transistor multiplicative mixer. IEEE Trans. THz Sci. Technol. 2, 278–283 (2012).

    Article  Google Scholar 

  50. Klimenko, O. A. et al. Temperature enhancement of terahertz responsivity of plasma field effect transistors. J. Appl. Phys. 112, 014506 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work at Sandia National Laboratories was supported by the Department of Energy Office of Basic Energy Sciences. This work was performed, in part, at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration (contract DE-AC04-94AL85000).

Author information

Authors and Affiliations

Authors

Contributions

G.C.D., S.J.A. and E.A.S. conceived and designed the devices. J.L.R. grew the 2DEG material. E.A.S. and D.B. fabricated and imaged the devices. A.D.G. and G.C.D. assembled the experiment. G.C.D. measured and analysed the data. G.R.A. and G.C.D. developed the theory and performed the model computations. G.C.D. wrote the manuscript with editorial input from G.R.A. and E.A.S. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Gregory C. Dyer or Eric A. Shaner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1241 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyer, G., Aizin, G., Allen, S. et al. Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals. Nature Photon 7, 925–930 (2013). https://doi.org/10.1038/nphoton.2013.252

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.252

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing