Real-time wavefront shaping through scattering media by all-optical feedback

Abstract

Controlling light through dynamically varying heterogeneous media is a sought-after goal with important applications ranging from free-space communication to nanosurgery. The underlying challenge is to control a large number of degrees of freedom of the optical wavefront, at timescales shorter than the medium dynamics. Many advances have been reported recently following the demonstration of focusing through turbid samples by wavefront shaping, where spatial light modulators with more than 1,000 degrees of freedom were used. Unfortunately, spatial light modulator-based wavefront shaping requires feedback from a detector or camera and is currently limited to slowly varying samples. Here, we demonstrate a novel approach for wavefront shaping utilizing all-optical feedback. We show that the complex wavefront required to focus light scattered by turbid samples (including thin biological tissues) can be generated at submicrosecond timescales by the process of field self-organization inside a multimode laser cavity, without requiring electronic feedback, spatial light modulators or phase-conjugation crystals.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Wavefront shaping through scattering media by all-optical feedback.
Figure 2: Focusing through an optical diffuser with all-optical feedback: experimental results.
Figure 3: Focusing through a time-varying diffuser.
Figure 4: Focusing through a 200-µm-thick chicken-breast sample.

References

  1. 1

    Tyson, R. K. Principles of Adaptive Optics 3rd edn (Academic, 2010).

    Google Scholar 

  2. 2

    Goodman, J. W., Huntley, J., Jackson, D. W. & Lehmann, M. Wavefront-reconstruction imaging through random media. Appl. Phys. Lett. 8, 311–313 (1966).

    ADS  Article  Google Scholar 

  3. 3

    Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nature Photon. 6, 283–292 (2012).

    ADS  Article  Google Scholar 

  4. 4

    Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007).

    ADS  Article  Google Scholar 

  5. 5

    Vellekoop, I. M., Lagendijk, A. & Mosk, A. P. Exploiting disorder for perfect focusing. Nature Photon. 4, 320–322 (2010).

    Article  Google Scholar 

  6. 6

    Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010).

    ADS  Article  Google Scholar 

  7. 7

    Čižmár, T., Mazilu, M. & Dholakia, K. In situ wavefront correction and its application to micromanipulation. Nature Photon. 4, 388–394 (2010).

    ADS  Article  Google Scholar 

  8. 8

    Katz, O., Small, E., Bromberg, Y. & Silberberg, Y. Focusing and compression of ultrashort pulses through scattering media. Nature Photon. 5, 372–377 (2011).

    ADS  Article  Google Scholar 

  9. 9

    Aulbach, J., Gjonaj, B., Johnson, P. M., Mosk, A. P. & Lagendijk, A. Control of light transmission through opaque scattering media in space and time. Phys. Rev. Lett. 106, 103901 (2011).

    ADS  Article  Google Scholar 

  10. 10

    McCabe, D. J. et al. Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium. Nature Commun. 2, 447 (2011).

    ADS  Article  Google Scholar 

  11. 11

    Katz, O., Small, E. & Silberberg, Y. Looking around corners and through thin turbid layers in real time with scattered incoherent light. Nature Photon. 6, 549–553 (2012).

    ADS  Article  Google Scholar 

  12. 12

    Xu, X., Liu, H. & Wang, L. V. Time-reversed ultrasonically encoded optical focusing into scattering media. Nature Photon. 5, 154–157 (2011).

    ADS  Article  Google Scholar 

  13. 13

    Wang, Y. M., Judkewitz, B., DiMarzio, C. A. & Yang, C. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light. Nature Commun. 3, 928 (2012).

    ADS  Article  Google Scholar 

  14. 14

    Si, K., Fiolka, R. & Cui, M. Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation. Nature Photon. 6, 657–661 (2012).

    ADS  Article  Google Scholar 

  15. 15

    Popoff, S., Lerosey, G., Fink, M., Boccara, A. C. & Gigan, S. Image transmission through an opaque material. Nature Commun. 1, 81 (2010).

    ADS  Article  Google Scholar 

  16. 16

    Yaqoob, Z., Psaltis, D., Feld, M. S. & Yang, C. Optical phase conjugation for turbidity suppression in biological samples. Nature Photon. 2, 110–115 (2008).

    ADS  Article  Google Scholar 

  17. 17

    Guan, Y., Katz, O., Small, E., Zhou, J. & Silberberg, Y. Polarization control of multiply scattered light through random media by wavefront shaping. Opt. Lett. 37, 4663–4665 (2012).

    ADS  Article  Google Scholar 

  18. 18

    Small, E., Katz, O., Guan, Y. & Silberberg, Y. Spectral control of broadband light through random media by wavefront shaping. Opt. Lett. 37, 3429–3431 (2012).

    ADS  Article  Google Scholar 

  19. 19

    Conkey, D. B., Caravaca-Aguirre, A. M. & Piestun, R. High-speed scattering medium characterization with application to focusing light through turbid media. Opt. Express 20, 1733–1740 (2012).

    ADS  Article  Google Scholar 

  20. 20

    Hsieh, C.-L., Pu, Y., Grange, R. & Psaltis, D. Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media. Opt. Express 18, 12283–12290 (2010).

    ADS  Article  Google Scholar 

  21. 21

    Sebbah, P. Waves and Imaging Through Complex Media (Kluwer Academic, 2001).

  22. 22

    Cao, H. Review on latest developments in random lasers with coherent feedback. J. Phys. A 38, 10497 (2005).

    ADS  MathSciNet  Article  Google Scholar 

  23. 23

    Cao, H. Lasing in random media. Waves Random Media 13, R1–R39 (2003).

    ADS  Article  Google Scholar 

  24. 24

    Wiersma, D. S. The physics and applications of random lasers. Nature Phys. 4, 359–367 (2008).

    ADS  Article  Google Scholar 

  25. 25

    Türeci, H. E., Ge, L., Rotter, S. & Stone, A. D. Strong interactions in multimode random lasers. Science 320, 643–646 (2008).

    ADS  Article  Google Scholar 

  26. 26

    Andreasen, J. et al. Modes of random lasers. Adv. Opt. Photon. 3, 88–127 (2011).

    Article  Google Scholar 

  27. 27

    Montaldo, G., Tanter, M. & Fink, M. Real time inverse filter focusing through iterative time reversal. J. Acoust. Soc. Am. 115, 768–775 (2004).

    ADS  Article  Google Scholar 

  28. 28

    Fink, M. Time reversed acoustics. Phys. Today 50, 34–40 (1997).

    Article  Google Scholar 

  29. 29

    Skolnik, M. Self-phasing array antennas. IEEE Trans. Antennas Propag. 12, 142–149 (1964).

    ADS  Article  Google Scholar 

  30. 30

    Giuliano, C. R. Applications of optical phase conjugation. Phys. Today 34, 27–35 (1981).

    Article  Google Scholar 

  31. 31

    Arnaud, J. Degenerate optical cavities. Appl. Opt. 8, 189–195 (1969).

    ADS  Article  Google Scholar 

  32. 32

    Nixon, M. et al. Synchronized cluster formation in coupled laser networks. Phys. Rev. Lett. 106, 223901 (2011).

    ADS  Article  Google Scholar 

  33. 33

    Vellekoop, I. M., van Putten, E. G., Lagendijk, A. & Mosk, A. P. Demixing light paths inside disordered metamaterials. Opt. Express 16, 67–80 (2008).

    ADS  Article  Google Scholar 

  34. 34

    Fabiny, L., Colet, P., Roy, R. & Lenstra, D. Coherence and phase dynamics of spatially coupled solid-state lasers. Phys. Rev. A 47, 5, 4287–4296 (1993).

    Article  Google Scholar 

  35. 35

    Nixon, M., Redding, B., Friesem, A., Cao, H. & Davidson, N. Efficient method for controlling the spatial coherence of a laser. Opt. Lett. 38, 3858–3861 (2013).

    ADS  Article  Google Scholar 

  36. 36

    Kanter, I. et al. Synchronization of mutually coupled chaotic lasers in the presence of a shutter. Phys. Rev. Lett. 98, 154101 (2007).

    ADS  Article  Google Scholar 

  37. 37

    Xu, J., Li, S., Lee, K. K. & Chen, Y. C. Phase locking in a two-element laser array: a test of the coupled-oscillator model. Opt. Lett. 18, 513–515 (1993).

    ADS  Article  Google Scholar 

  38. 38

    Fried, D. L. Anisoplanatism in adaptive optics. J. Opt. Soc. Am. 72, 52–61 (1982).

    ADS  Article  Google Scholar 

  39. 39

    Freund, I., Rosenbluh, M. & Feng, S. Memory effects in propagation of optical waves through disordered media. Phys. Rev. Lett. 61, 2328–2331 (1988).

    ADS  Article  Google Scholar 

  40. 40

    Xiaoming, Z. & Kahn, J. M. Performance bounds for coded free-space optical communications through atmospheric turbulence channels. IEEE Trans. Commun. 51, 1233–1239 (2003).

    Article  Google Scholar 

  41. 41

    Tao, H. et al. Implantable, multifunctional, bioresorbable optics. Proc. Natl Acad. Sci. USA 109, 19584–19589 (2012).

    ADS  Article  Google Scholar 

  42. 42

    Jacquin, O. et al. Acousto-optic laser optical feedback imaging. Opt. Lett. 37, 2514–2516 (2012).

    ADS  Article  Google Scholar 

  43. 43

    Gather, M. C. & Yun, S. H. Single-cell biological lasers. Nature Photon. 5, 406–410 (2011).

    ADS  Article  Google Scholar 

  44. 44

    Osinski, M. & Buus, J. Linewidth broadening factor in semiconductor lasers – an overview. IEEE J. Quant. Electron. 23, 9–29 (1987).

    ADS  Article  Google Scholar 

  45. 45

    Lemoult, F., Lerosey, G., de Rosny, J. & Fink, M. Manipulating spatiotemporal degrees of freedom of waves in random media. Phys. Rev. Lett. 103, 173902 (2009).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Israel Science Foundation, the European Research Council advanced grant QUAMI, and the Crown Photonics Center.

Author information

Affiliations

Authors

Contributions

All authors contributed to designing the experiments and writing the manuscript. M.N., O.K. and E.S. performed the experiments. M.N. and O.K. analysed the results and performed numerical simulations.

Corresponding author

Correspondence to Nir Davidson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1011 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nixon, M., Katz, O., Small, E. et al. Real-time wavefront shaping through scattering media by all-optical feedback. Nature Photon 7, 919–924 (2013). https://doi.org/10.1038/nphoton.2013.248

Download citation

Further reading