The laminar–turbulent transition in a fibre laser


Studying the transition from a linearly stable coherent laminar state to a highly disordered state of turbulence is conceptually and technically challenging, and of great interest because all pipe and channel flows are of that type1,2. In optics, understanding how a system loses coherence, as spatial size or the strength of excitation increases, is a fundamental problem of practical importance3,4,5. Here, we report our studies of a fibre laser that operates in both laminar and turbulent regimes. We show that the laminar phase is analogous to a one-dimensional coherent condensate and the onset of turbulence is due to the loss of spatial coherence. Our investigations suggest that the laminar–turbulent transition in the laser is due to condensate destruction by clustering dark and grey solitons. This finding could prove valuable for the design of coherent optical devices as well as systems operating far from thermodynamic equilibrium.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Laminar–turbulent transition in the fibre laser experiment.
Figure 2: Coherent structures in spatiotemporal dynamics in experiment and numerical simulation for laminar and turbulent regimes.
Figure 3: Soliton clustering at the laminar–turbulent transition (numerical modelling) at fixed power.
Figure 4: Probability density function for the condensate lifetime showing the probabilistic nature of the laminar–turbulent transition via soliton clustering.


  1. 1

    Landau, L. & Lifshits, E. Fluid Mechanics Ch. 26–28 (Pergamon, 1959).

    Google Scholar 

  2. 2

    Avila, K. et al. The onset of turbulence in pipe flow. Science 333, 192–196 (2011).

    ADS  Article  Google Scholar 

  3. 3

    Siegman, A. E. Lasers (University Science Books, 1986).

    Google Scholar 

  4. 4

    Mandel, L. & Wolf, E. Optical Coherence and Quantum Optics Ch. 18, 19 (Cambridge Univ. Press, 1995).

    Google Scholar 

  5. 5

    Milonni, P. W. & Eberly, J. H. Laser Physics Ch. 13 (Wiley, 2010).

    Google Scholar 

  6. 6

    Cross, M. & Hohenberg, P. Pattern-formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1123 (1993).

    ADS  Article  Google Scholar 

  7. 7

    Shats, M. Parametrically excited water surface ripples as ensembles of oscillations. Phys. Rev. Lett. 108, 03452 (2012).

    Article  Google Scholar 

  8. 8

    Du, Y. & Karniadakis, G. E. Suppressing wall turbulence by means of a transverse travelling wave. Science 288, 1230–1234 (2000).

    ADS  Article  Google Scholar 

  9. 9

    Hof, B. et al. Experimental observation of nonlinear travelling waves in turbulent pipe flow. Science 305, 1594–1597 (2004).

    ADS  Article  Google Scholar 

  10. 10

    Agrawal, G. P. Nonlinear Fiber Optics Ch. 5 (Academic, 2001).

    Google Scholar 

  11. 11

    Turitsyna, E. G., Falkovich, G. E., Mezentsev, V. K. & Turitsyn, S. K. Optical turbulence and spectral condensate in long-fiber lasers. Phys. Rev. A 80, 031804R (2009).

    ADS  Article  Google Scholar 

  12. 12

    Turitsyna E. G. et al. Optical turbulence and spectral condensate in long fibre lasers. Proc. R. Soc. A 468, 2496–2508 (2012).

    ADS  MathSciNet  Article  Google Scholar 

  13. 13

    Sun, C. et al. Observation of the kinetic condensation of classical waves. Nature Phys. 8, 470–474 (2012).

    ADS  Article  Google Scholar 

  14. 14

    Klaers, J., Julian Schmitt, J., Vewinger, F. & Weitz, M. Bose–Einstein condensation of photons in an optical microcavity. Nature 468, 545–548 (2010).

    ADS  Article  Google Scholar 

  15. 15

    Shrira, V. & Nazarenko, S. Advances in Wave Turbulence Ch. 4 (World Scientific, 2013).

    Google Scholar 

  16. 16

    Laurie, J., Bortolozzo, U., Nazarenko, S. & Residori, S. One-dimensional optical wave turbulence: experiment and theory. Phys. Rep. 514, 121–175 (2012).

    ADS  Article  Google Scholar 

  17. 17

    Babin, S. A. et al. FWM-induced turbulent spectral broadening in a long Raman fibre laser. J. Opt. Soc. Am. B 24, 1729–1738 (2007).

    ADS  Article  Google Scholar 

  18. 18

    Garnier, J., Lisak, M. & Picozzi, A. Toward a wave turbulence formulation of statistical nonlinear optics. J. Opt. Soc. Am. B 29, 2229–2242 (2012).

    ADS  Article  Google Scholar 

  19. 19

    Zakharov, V., L'vov, V. & Falkovich, G. Kolmogorov Spectra of Turbulence Ch. 2, 3 (Springer, 1992).

    Google Scholar 

  20. 20

    Kringlebotn, J. T., Archambault, J. L., Reekie, L. & Payne, D. N. Er3+:Yb3+-co-doped fiber distributed-feedback laser. Opt. Lett. 19, 2101–2103 (1994).

    ADS  Article  Google Scholar 

  21. 21

    Shi, J., Alam, S. & Ibsen, M. Sub-watt threshold, kilohertz-linewidth Raman distributed-feedback fiber laser. Opt. Lett. 37, 1544–1546 (2012).

    ADS  Article  Google Scholar 

  22. 22

    Kibler, B. et al. The Peregrine soliton in nonlinear fibre optics. Nature Phys. 6, 790–795 (2010).

    ADS  Article  Google Scholar 

  23. 23

    Kibler, B. et al. Observation of Kuznetsov–Ma soliton dynamics in optical fibre. Sci. Rep. 2, 463 (2012).

    Article  Google Scholar 

  24. 24

    Solli, D. R., Ropers, C., Koonath, P. & Jalali, B. Optical rogue waves. Nature 450, 1054–1057 (2007).

    ADS  Article  Google Scholar 

  25. 25

    Solli, D. R., Herink, G., Jalali, B. & Ropers, C. Fluctuations and correlations in modulation instability. Nature Photon. 6, 463–468 (2012).

    ADS  Article  Google Scholar 

  26. 26

    Okhotnikov, O. G. (ed.) Fiber Lasers (Wiley-VCH, 2012).

    Google Scholar 

  27. 27

    Churkin, D. V., Smirnov, S. V. & Podivilov, E. V. Statistical properties of partially coherent CW fiber lasers. Opt. Lett. 35, 3288–3290 (2010).

    ADS  Article  Google Scholar 

  28. 28

    Bogoliubov, N. N. On the theory of superfluidity. J. Phys. (USSR) 11, 23–32 (1947).

    MathSciNet  Google Scholar 

  29. 29

    Kivshar, Y. S. & Luther-Davies, B. Optical dark solitons: physics and applications. Phys. Rep. 298, 81–197 (1998).

    ADS  Article  Google Scholar 

Download references


The authors thank I. Vatnik for his support at the very early stage of the experiments. This work was supported by the Israel Science Foundation and US-Israel Binational Science Foundation grants (Israel), the European Research Council (project ULTRALASER), the Leverhulme Trust, the Royal Society (UK), the Russian Ministry of Science and Education (agreement 14.B25.31.0003) and the Dynasty Foundation (Russia).

Author information




S.K.T. and G.F. initiated the study. D.V.C. conceived the experiment and, with S.S. and N.T., carried it out. E.G.T. and S.V.S. designed and conducted the numerical modelling. E.G.T. and X.S. designed the special laser mirrors. X.S. fabricated the laser mirrors. G.F., S.K.T. and D.V.C. guided the theoretical and experimental investigations. G.F., S.K.T., D.V.C., E.V.P., S.A.B., S.V.S., E.G.T., S.S. and N.T. analysed the data. G.F., S.K.T. and D.V.C. wrote the paper.

Corresponding author

Correspondence to S. K. Turitsyn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1920 kb)

Supplementary Movie

Supplementary Movie (MOV 4953 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Turitsyna, E., Smirnov, S., Sugavanam, S. et al. The laminar–turbulent transition in a fibre laser. Nature Photon 7, 783–786 (2013).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing