Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Elastomeric polymer light-emitting devices and displays

Abstract

The emergence of devices that combine elasticity with electronic or optoelectronic properties offers exciting new opportunities for applications, but brings significant materials challenges. Here, we report the fabrication of an elastomeric polymer light-emitting device (EPLED) using a simple, all-solution-based process. The EPLED features a pair of transparent composite electrodes comprising a thin percolation network of silver nanowires inlaid in the surface layer. The resulting EPLED, which exhibits rubbery elasticity at room temperature, is collapsible, and can emit light when exposed to strains as large as 120%. It can also survive repeated continuous stretching cycles, and small stretching is shown to significantly enhance its light-emitting efficiency. The fabrication process is scalable and was readily adapted for the demonstration of a simple passive matrix monochrome display featuring a 5 × 5 pixel array.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Visual transparency, stretchability and SEM characterization of composite electrodes.
Figure 2: Device characterization of a stretchable PLEC.
Figure 3: Demonstration of encapsulated fully stretchable display.

Similar content being viewed by others

References

  1. Filiatrault, H. L., Porteous, G. C., Carmichael, R. S., Davidson, G. J. E. & Carmichael, T. B. Stretchable light-emitting electrochemical cells using an elastomeric emissive material. Adv. Mater. 24, 2673–2678 (2012).

    Article  Google Scholar 

  2. Someya, T. Flexible electronics: tiny lamps to illuminate the body. Nature Mater. 9, 879–880 (2010).

    Article  ADS  Google Scholar 

  3. Sprengard, R. et al. OLED devices for signage applications: a review of recent advances and remaining challenges. Proc. SPIE 5519, 173–183 (2004).

    Article  ADS  Google Scholar 

  4. Viventi, J. et al. A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci. Transl. Med. 2, 24ra22 (2010).

    Article  Google Scholar 

  5. Yu, Z., Niu, X., Liu, Z. & Pei, Q. Intrinsically stretchable polymer light-emitting devices using carbon nanotube–polymer composite electrodes. Adv. Mater. 23, 3989–3994 (2011).

    Article  Google Scholar 

  6. Kim, R. H. et al. Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. Nano Lett. 11, 3881–3886 (2011).

    Article  ADS  Google Scholar 

  7. Kim, R. H. et al. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nature Mater. 9, 929–937 (2010).

    Article  ADS  Google Scholar 

  8. Park, S. I. et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 325, 977–981 (2009).

    Article  ADS  Google Scholar 

  9. Sekitani, T. et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nature Mater. 8, 494–499 (2009).

    Article  ADS  Google Scholar 

  10. Jeong, G. S. et al. Solderable and electroplatable flexible electronic circuit on a porous stretchable elastomer. Nature Commun. 3, 997 (2012).

    Article  ADS  Google Scholar 

  11. Pike, G. E. & Seager, C. H. Percolation and conductivity: a computer study. I. Phys. Rev. B 10, 1421–1434 (1974).

    Article  ADS  Google Scholar 

  12. Lee, P. et al. Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater. 24, 3326–3332 (2012).

    Article  Google Scholar 

  13. Akter, T. & Kim, W. S. Reversibly stretchable transparent conductive coatings of spray-deposited silver nanowires. ACS Appl. Mater. Interfaces 4, 1855–1859 (2012).

    Article  Google Scholar 

  14. De, S. et al. Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS Nano 3, 1767–1774 (2009).

    Article  Google Scholar 

  15. Feng, X. & Zhu, Y. Highly conductive and stretchable silver nanowire conductors. Adv. Mater. 24, 5117–5122 (2012).

    Article  Google Scholar 

  16. Gaynor, W., Lee, J. Y. & Peumans, P. Fully solution-processed inverted polymer solar cells with laminated nanowire electrodes. ACS Nano 4, 30–34 (2010).

    Article  Google Scholar 

  17. Hu, L., Kim, H. S., Lee, J. Y., Peumans, P. & Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4, 2955–2963 (2010).

    Article  Google Scholar 

  18. Yun, S. et al. Compliant silver nanowire–polymer composite electrodes for bistable large strain actuation. Adv. Mater. 24, 1321–1327 (2012).

    Article  Google Scholar 

  19. Hu, W. et al. Intrinsically stretchable transparent electrodes based on silver-nanowire–crosslinked-polyacrylate composites. Nanotechnology 23, 344002 (2012).

    Article  Google Scholar 

  20. Yu, Z. et al. Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv. Mater. 23, 664–668 (2011).

    Article  Google Scholar 

  21. Bauhofer, W. & Kovacs, J. Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 69, 1486–1498 (2009).

    Article  Google Scholar 

  22. Malinsky, M. D., Kelly, K. L., Schatz, G. C. & Van Duyne, R. P. Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles. J. Phys. Chem. B 105, 2343–2350 (2001).

    Article  Google Scholar 

  23. Lipomi, D. J. et al. Electronic properties of transparent conductive films of PEDOT:PSS on stretchable substrates. Chem. Mater. 24, 373–382 (2012).

    Article  Google Scholar 

  24. Pei, Q. B., Yu, G., Zhang, C., Yang, Y. & Heeger, A. J. Polymer light-emitting electrochemical cells. Science 269, 1086–1088 (1995).

    Article  ADS  Google Scholar 

  25. Sun, Q., Li, Y. & Pei, Q. Polymer light-emitting electrochemical cells for high-efficiency low-voltage electroluminescent devices. J. Display Technol. 3, 211–224 (2007).

    Article  ADS  Google Scholar 

  26. Sandström, A., Dam, H., Krebs, F. & Edman, L. Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating. Nature Commun. 3, 1002 (2012).

    Article  ADS  Google Scholar 

  27. Matyba, P. et al. Graphene and mobile ions: the key to all-plastic, solution-processed light-emitting devices. ACS Nano 4, 637–642 (2010).

    Article  Google Scholar 

  28. Shao, Y., Bazan, G. C. & Heeger, A. J. Long-lifetime polymer light-emitting electrochemical cells. Adv. Mater. 19, 365–370 (2007).

    Article  Google Scholar 

  29. Yu, Z., Sun, M. & Pei, Q. Electrochemical formation of stable p–i–n junction in conjugated polymer thin films. J. Phys. Chem. B 113, 8481–8486 (2009).

    Article  Google Scholar 

  30. Yu, Z. et al. Stabilizing the dynamic p–i–n junction in polymer light-emitting electrochemical cells. J. Phys. Chem. Lett. 2, 367–372 (2011).

    Article  Google Scholar 

  31. Brochu, P. & Pei, Q. Advances in dielectric elastomers for actuators and artificial muscles. Macromol. Rapid Commun. 31, 10–36 (2010).

    Article  Google Scholar 

  32. Pelrine, R., Kornbluh, R., Pei, Q. & Joseph, J. High-speed electrically actuated elastomers with strain greater than 100%. Science 287, 836–839 (2000).

    Article  ADS  Google Scholar 

  33. Lee, S., Hong, J. Y. & Jang, J. Multifunctional graphene sheets embedded in silicone encapsulant for superior performance of light-emitting diodes. ACS Nano 7, 5784–5790 (2013).

    Article  Google Scholar 

  34. Kunz, D. A. et al. Clay-based nanocomposite coating for flexible optoelectronics applying commercial polymers. ACS Nano 7, 4275–4280 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (ECCS-1028412) and the Air Force Office of Scientific Research (FA9550-12-1-0074). The authors thank Zhi Ren and Kwing Tong for experimental assistance.

Author information

Authors and Affiliations

Authors

Contributions

J.L. and Q.P. conceived and designed the research. X.N. carried out the mechanical measurements. J.L., L.L., X.N., Z.Y. and Q.P. participated in materials preparation, device fabrication and data interpretation. J.L. and Q.P. wrote the paper. Q.P. supervised the project.

Corresponding author

Correspondence to Qibing Pei.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3329 kb)

Supplementary Movie

Supplementary Movie 1 (WMV 2224 kb)

Supplementary Movie

Supplementary Movie 2 (WMV 1677 kb)

Supplementary Movie

Supplementary Movie 3 (WMV 3122 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, J., Li, L., Niu, X. et al. Elastomeric polymer light-emitting devices and displays. Nature Photon 7, 817–824 (2013). https://doi.org/10.1038/nphoton.2013.242

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.242

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing