High-responsivity graphene/silicon-heterostructure waveguide photodetectors

Abstract

Graphene-based photonic devices, such as ultrafast photodetectors, optical modulators and tunable surface plasmon polariton devices, have experienced rapid development in recent years1,2,3,4,5,6 because they benefit greatly from graphene's strong field-controlled optical response7,8. Here, we demonstrate a graphene/silicon-heterostructure photodiode formed by integrating graphene onto a silicon optical waveguide on a silicon-on-insulator (SOI) with a near to mid-infrared operational range. The waveguide enables absorption of evanescent light that propagates parallel to the graphene sheet, which results in a responsivity as high as 0.13 A W−1 at a 1.5 V bias for 2.75 µm light at room temperature. A photocurrent dependence on bias polarity was observed and attributed to two distinct mechanisms for optical absorption, that is, direct and indirect transitions in graphene at 1.55 µm and 2.75 µm, respectively. Our result demonstrates the use of in-plane absorption in a graphene-monolayer structure and the feasibility of exploiting indirect transitions in graphene/silicon-heterostructure waveguides for mid-infrared detection.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic of graphene/silicon-heterostructure waveguide photodetector.
Figure 2: Infrared performance of photoresponse.
Figure 3: Energy-band diagram of graphene/silicon-heterostructure waveguide photodetector.

References

  1. 1

    Xia, F., Mueller, T., Lin, Y.-M., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nature Nanotech. 4, 839–843 (2009).

    ADS  Article  Google Scholar 

  2. 2

    Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotech. 6, 630–634 (2011).

    ADS  Article  Google Scholar 

  3. 3

    Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).

    ADS  Article  Google Scholar 

  4. 4

    Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    ADS  Article  Google Scholar 

  5. 5

    Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    ADS  Article  Google Scholar 

  6. 6

    Yan, H. et al. Tunable infrared plasmonic devices using graphene/insulator stacks. Nature Nanotech. 7, 330–334 (2012).

    ADS  Article  Google Scholar 

  7. 7

    Li, Z. Q. et al. Dirac charge dynamics in graphene by infrared spectroscopy. Nature Phys. 4, 532–535 (2008).

    ADS  Article  Google Scholar 

  8. 8

    Wang, F. et al. Gate-variable optical transitions in graphene. Science 320, 206–209 (2008).

    ADS  Article  Google Scholar 

  9. 9

    Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    ADS  Article  Google Scholar 

  10. 10

    Mak, K. F. et al. Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 101, 196405 (2008).

    ADS  Article  Google Scholar 

  11. 11

    Hendry, E., Hale, P. J., Moger, J., Savchenko, A. K. & Mikhailov, S. A. Coherent nonlinear optical response of graphene. Phys. Rev. Lett. 105, 097401 (2010).

    ADS  Article  Google Scholar 

  12. 12

    Liu, X. et al. Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation. Nature Photon. 6, 667–671 (2012).

    ADS  Article  Google Scholar 

  13. 13

    Jalali, B. et al. Prospects for silicon mid-IR Raman lasers. IEEE J. Sel. Top. Quant. 12, 1618–1627 (2006).

    Article  Google Scholar 

  14. 14

    Keuleyan, S., Lhuillier, E., Brajuskovic, V. & Guyot-Sionnest, P. Mid-infrared HgTe colloidal quantum dot photodetectors. Nature Photon. 5, 489–493 (2011).

    ADS  Article  Google Scholar 

  15. 15

    Rogalski, A. HgCdTe infrared detector material: history, status and outlook. Rep. Prog. Phys. 68, 2267–2336 (2005).

    ADS  Article  Google Scholar 

  16. 16

    Lackner, D. et al. Growth of InAsSb/InAs MQWs on GaSb for mid-IR photodetector applications. J. Cryst. Growth 311, 3563–3567 (2009).

    ADS  Article  Google Scholar 

  17. 17

    Stiff-Roberts, A. D. Quantum-dot infrared photodetectors: a review. J. Nanophoton. 3, 031607 (2009).

    Article  Google Scholar 

  18. 18

    Lee, E. J. H., Balasubramanian, K., Weitz, R. T., Burghard, M. & Kern, K. Contact and edge effects in graphene devices. Nature Nanotech. 3, 486–490 (2008).

    ADS  Article  Google Scholar 

  19. 19

    Park, J., Ahn, Y. H. & Ruiz-Vargas, C. Imaging of photocurrent generation and collection in single-layer graphene. Nano Lett. 9, 1742–1746 (2009).

    ADS  Article  Google Scholar 

  20. 20

    Mueller, T., Xia, F. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nature Photon. 4, 297–301 (2010).

    Article  Google Scholar 

  21. 21

    Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).

    ADS  Article  Google Scholar 

  22. 22

    Konstantatos, G. et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nature Nanotech. 7, 363–368 (2012).

    ADS  Article  Google Scholar 

  23. 23

    Engel, M. et al. Light–matter interaction in a microcavity-controlled graphene transistor. Nature Commun. 3, 906 (2012).

    ADS  Article  Google Scholar 

  24. 24

    Furchi, M. et al. Microcavity-integrated graphene photodetector. Nano Lett. 12, 2773–2777 (2012).

    ADS  Article  Google Scholar 

  25. 25

    Echtermeyer, T. J. et al. Strong plasmonic enhancement of photovoltage in graphene. Nature Commun. 2, 458 (2011).

    ADS  Article  Google Scholar 

  26. 26

    Gu, T. et al. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nature Photon. 6, 554–559 (2012).

    ADS  Article  Google Scholar 

  27. 27

    Bao, Q. et al. Broadband graphene polarizer. Nature Photon. 5, 411–415 (2011).

    ADS  Article  Google Scholar 

  28. 28

    Koester, S. J. & Li, M. High-speed waveguide-coupled graphene-on-graphene optical modulators. Appl. Phys. Lett. 100, 171107 (2012).

    ADS  Article  Google Scholar 

  29. 29

    Li, H., Anugrah, Y., Koester, S. J. & Li, M. Optical absorption in graphene integrated on silicon waveguides. Appl. Phys. Lett. 101, 111110 (2012).

    ADS  Article  Google Scholar 

  30. 30

    Pospischil, A. et al. CMOS-integrated graphene photodetector covering all optical communication bands. Nature Photon. http://dx.doi.org/10.1038/nphoton.2013.240 (15 September 2013).

  31. 31

    Das, A. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotech. 3, 210–215 (2008).

    Article  Google Scholar 

  32. 32

    Yang, H. et al. Graphene barristor, a triode device with a gate-controlled Schottky barrier. Science 336, 1140–1143 (2012).

    ADS  Article  Google Scholar 

  33. 33

    An, Y., Behnam, A., Pop, E. & Ural, A. Metal–semiconductor–metal photodetectors based on graphene/p-type silicon Schottky junctions. Appl. Phys. Lett. 102, 013110 (2013).

    ADS  Article  Google Scholar 

  34. 34

    Cheng, Z., Chen, X., Wong, C. Y., Xu, K. & Tsang, H. K. Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator. IEEE Photon. J. 4, 1510–1519 (2012).

    ADS  Article  Google Scholar 

  35. 35

    Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    ADS  Article  Google Scholar 

  36. 36

    Wang, X. M., Xu, J. B., Wang, C. L., Du, J. & Xie, W. G. High-performance graphene devices on SiO2/Si substrate modified by highly ordered self-assembled monolayers. Adv. Mater. 23, 2464–2468 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hong Kong Research Grants Council (RGC) research grants (Grant Nos CUHK1/CRF/12G, CUHK4179/10E, SEG-CUHK01, CUHK4165/12E and AoE/P-02/12), and the National Natural Science Foundation of China (NSFC)/RGC Joint Research Scheme (N_CUHK405/12). J.-B.X. thanks the NSFC for support, particularly via Grant Nos 60990314, 60928009 and 61229401. Z.Z.C. thanks for the Hong Kong RGC PhD Fellowship.

Author information

Affiliations

Authors

Contributions

X.W. conceived the project. X.W. and Z.C. contributed equally to conduction of the experiments. K.X. helped with the sample preparation. X.W. and Z.C. wrote the manuscript. J.-B.X. and H.K.T. supervised the project. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Xiaomu Wang or Hon Ki Tsang or Jian-Bin Xu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1682 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, X., Cheng, Z., Xu, K. et al. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nature Photon 7, 888–891 (2013). https://doi.org/10.1038/nphoton.2013.241

Download citation

Further reading