Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

CMOS-compatible graphene photodetector covering all optical communication bands

Abstract

Optical interconnects are becoming attractive alternatives to electrical wiring in intra- and interchip communication links. Particularly, the integration with silicon complementary metal–oxide semiconductor (CMOS) technology has received considerable interest because of the ability of cost-effective integration of electronics and optics on a single chip1. Although silicon enables the realization of optical waveguides2 and passive components3, the integration of another, optically absorbing, material is required for photodetection. Traditionally, germanium4 or compound semiconductors5 are used for this purpose; however, their integration with silicon technology faces major challenges. Recently, graphene6 emerged as a viable alternative for optoelectronic applications7, including photodetection8. Here, we demonstrate an ultra-wideband CMOS-compatible photodetector based on graphene. We achieved a multigigahertz operation over all fibre-optic telecommunication bands beyond the wavelength range of strained germanium photodetectors9, the responsivity of which is limited by their bandgap. Our work complements the recent demonstration of a CMOS-integrated graphene electro-optical modulator10, and paves the way for carbon-based optical interconnects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Waveguide-integrated graphene photodetector.
Figure 2: Simulation results and device optimization.
Figure 3: Performance characteristics of a bilayer graphene photodetector.
Figure 4: High-speed photoresponse of a bilayer graphene photodetector.

Similar content being viewed by others

References

  1. Jalali, B. & Fathpour, S. Silicon photonics. J. Lightwave Technol. 24, 4600–4615 (2004).

    Article  ADS  Google Scholar 

  2. Vlasov, Y. A. & McNab, S. J. Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt. Express 12, 1622–1631 (2004).

    Article  ADS  Google Scholar 

  3. Bogaerts, W. et al. Compact wavelength-selective functions in silicon-on-insulator photonic wires. IEEE J. Sel. Top. Quant. Electron. 12, 1394–11401 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  4. Chen, L. & Lipson, M. Ultra-low capacitance and high speed germanium photodetectors on silicon. Opt. Express 17, 7901–7906 (2009).

    Article  ADS  Google Scholar 

  5. Park, H. et al. A hybrid AlGaInAs–silicon evanescent waveguide photodetector. Opt. Express 15, 6044–6052 (2007).

    Article  ADS  Google Scholar 

  6. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  ADS  Google Scholar 

  7. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010).

    Article  ADS  Google Scholar 

  8. Mueller, T., Xia, F. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nature Photon. 4, 297–301 (2010).

    Article  Google Scholar 

  9. Liu, J. et al. High-performance, tensile-strained Ge p–i–n photodetectors on a Si platform. Appl. Phys. Lett. 87, 103501 (2005).

    Article  ADS  Google Scholar 

  10. Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).

    Article  ADS  Google Scholar 

  11. Lee, E. J. H., Balasubramanian, K., Weitz, R. T., Burghard, M. & Kern, K. Contact and edge effects in graphene devices. Nature Nanotech. 3, 486–490 (2008).

    Article  ADS  Google Scholar 

  12. Xia, F. et al. Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 9, 1039–1044 (2009).

    Article  ADS  Google Scholar 

  13. Park, J., Ahn, Y. H. & Ruiz-Vargasv, C. Imaging of photocurrent generation and collection in single-layer graphene. Nano Lett. 9, 1742–1746 (2009).

    Article  ADS  Google Scholar 

  14. Xu, X. et al. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2010).

    Article  ADS  Google Scholar 

  15. Lemme, M. C. et al. Gate-activated photoresponse in a graphene p–n junction. Nano Lett. 11, 4134–4137 (2010).

    Article  ADS  Google Scholar 

  16. Gabor, N. M. et al. Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

    Article  ADS  Google Scholar 

  17. Freitag, M., Low, T., Xia, F., & Avouris, P. Photoconductivity of biased graphene. Nature Photon. 7, 53–59 (2013).

    Article  ADS  Google Scholar 

  18. Song, J. C. W., Rudner, M. S., Marcus, C. M. & Levitov, L. S. Hot carrier transport and photocurrent response in graphene. Nano Lett. 11, 4688–4692 (2011).

    Article  ADS  Google Scholar 

  19. Xia, F., Mueller, T., Lin, Y.-M., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nature Nanotech. 4, 839–843 (2009).

    Article  ADS  Google Scholar 

  20. Echtermeyer, T. J. et al. Strong plasmonic enhancement of photovoltage in graphene. Nature Commun. 2, 458 (2011).

    Article  ADS  Google Scholar 

  21. Liu, Y. et al. Plasmon resonance enhanced multicolour photodetection by graphene. Nature Commun. 2, 579 (2011).

    Article  ADS  Google Scholar 

  22. Furchi, M. et al. Microcavity-integrated graphene photodetector. Nano Lett. 12, 2773–2777 (2012).

    Article  ADS  Google Scholar 

  23. Konstantatos, G. et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nature Nanotech. 7, 363–368 (2012).

    Article  ADS  Google Scholar 

  24. Yan, J. et al. Dual-gated bilayer graphene hot-electron bolometer. Nature Nanotech. 7, 472–478 (2012).

    Article  ADS  Google Scholar 

  25. Vicarelli, L. et al. A. Graphene field-effect transistors as room-temperature terahertz detectors. Nature Mater. 11, 865–871 (2012).

    Article  ADS  Google Scholar 

  26. Liu, M., Yin, X. & Zhang, X. Double-layer graphene optical modulator. Nano Lett. 12, 1482–1485 (2012).

    Article  ADS  Google Scholar 

  27. Lee, C.-C., Suzuki, S., Xie, W. & Schibli, T. R. Broadband graphene electro-optic modulators with sub-wavelength thickness. Opt. Express 20, 5264–5269 (2012).

    Article  ADS  Google Scholar 

  28. Koester, S. J. & Li, M. High-speed waveguide-coupled graphene-on-graphene optical modulators. Appl. Phys. Lett. 100, 171107 (2012).

    Article  ADS  Google Scholar 

  29. Li, Z. Q. et al. Dirac charge dynamics in graphene by infrared spectroscopy. Nature Phys. 4, 532–535 (2008).

    Article  ADS  Google Scholar 

  30. Wang, F. et al. Gate-variable optical transitions in graphene. Science 320, 206–209 (2008).

    Article  ADS  Google Scholar 

  31. Kim, K., Choi, J.-Y., Kim, T., Cho, S.-H. & Chung, H.-J. A role for graphene in silicon-based semiconductor devices. Nature 479, 338–344 (2011).

    Article  ADS  Google Scholar 

  32. Bruna, M. & Borini, S. Optical constants of graphene layers in the visible range. Appl. Phys. Lett. 94, 031901 (2009).

    Article  ADS  Google Scholar 

  33. Assefa, S. et al. CMOS-integrated high-speed MSM germanium waveguide photodetector. Opt. Express 18, 4986–4999 (2010).

    Article  ADS  Google Scholar 

  34. Freitag, M., Low, T. & Avouris, P. Increased responsivity of suspended graphene photodetectors. Nano Lett. 13, 1644–1648 (2013).

    Article  ADS  Google Scholar 

  35. Urich, A. et al. Silver nanoisland enhanced Raman interaction in graphene. Appl. Phys. Lett. 101, 153113 (2012).

    Article  ADS  Google Scholar 

  36. Geis, M. W. et al. CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band. IEEE Photon. Technol. Lett. 19, 152–154 (2007).

    Article  ADS  Google Scholar 

  37. Su, S. et al. GeSn p–i–n photodetector for all telecommunication bands detection. Opt. Express 19, 6400–6405 (2011).

    Article  ADS  Google Scholar 

  38. Koester, S. J., Li, H. & Li, M. Switching energy limits of waveguide-coupled graphene-on-graphene optical modulators. Opt. Express 20, 20330–20341 (2012).

    Article  ADS  Google Scholar 

  39. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotech. 5, 574–578 (2010).

    Article  ADS  Google Scholar 

  40. Ma, H., Jen, A. K.-Y. & Dalton, L. R. Polymer-based optical waveguides: materials, processing, and devices. Adv. Mater. 14, 1339–1365 (2002).

    Article  Google Scholar 

  41. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with W. Schrenk and K. Unterrainer. We thank H. Arthaber for lending us a sampling oscilloscope and K. Unterrainer, J. Darmo and D. Dietze for providing access to their femtosecond fibre laser. This work was supported by the Austrian Science Fund FWF (START Y-539) and the Austrian Research Promotion Agency FFG (NIL-Graphene, PLATON-SiN).

Author information

Authors and Affiliations

Authors

Contributions

T.M. conceived and designed the experiments. A.P. and M.H. fabricated the samples. A.P. carried out the measurements. T.M. and M.H. performed the simulations. M.M.F. and D.B. contributed to the development of the measurement set-ups. R.G. and T.F. contributed to the sample fabrication. A.P. and T.M. analysed the data. T.M. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Thomas Mueller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pospischil, A., Humer, M., Furchi, M. et al. CMOS-compatible graphene photodetector covering all optical communication bands. Nature Photon 7, 892–896 (2013). https://doi.org/10.1038/nphoton.2013.240

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.240

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing