Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Miniature chiral beamsplitter based on gyroid photonic crystals


The linearly polarizing beamsplitter1,2 is a widely used optical component in photonics. It is typically built from a linearly birefringent crystal such as calcite, which has different critical reflection angles for s- and p-polarized light3, leading to the transmission of one linear polarization and angled reflection of the other. However, the analogue for splitting circularly polarized light has yet to be demonstrated due to a lack of natural materials with sufficient circular birefringence. Here, we present a nano-engineered photonic-crystal chiral beamsplitter that fulfils this task. It consists of a prism featuring a nanoscale chiral gyroid network4,5,6,7,8,9,10 and can separate left- and right-handed circularly polarized light in the wavelength region around 1.615 µm. The structure is fabricated using a galvo-dithered direct laser writing method and could become a useful component for developing integrated photonic circuits that provide a new form of polarization control.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The CBS is built from a cubic chiral srs-network and with the ability to split circularly polarized light.
Figure 2: Optical characterization of the polymer srs-network along [001] with a = 1.2 µm.
Figure 3: SEM images of the CBS fabricated using GD-DLW and consisting of 64,000 unit cells of the srs-network (768,000 individual rods).
Figure 4: Characterization of the CBS under excitation along [100] (that is, at 45° to the input surface) for LCP (blue) and RCP (red) incident light.


  1. Nicol, W. On a method of so far increasing the divergency of the two rays in calcareous-spar, that only one image may be seen at a time. Edinb. New Philos. J. 6, 83–84 (1829).

    Google Scholar 

  2. Glan, P. Über einen polarisator. Rep. Exptl-Physik 16, 570–573 (1880).

    Google Scholar 

  3. Bass, M. Handbook of Optics (McGraw-Hill, 2001).

    Google Scholar 

  4. Schoen, A. H. Infinite Periodic Minimal Surfaces Without Self-Intersections (NASA, 1970).

    MATH  Google Scholar 

  5. Pringle, G. E. The structure of SrSi2: a crystal of class O(432). Acta Crystallogr. B 28, 2326–2328 (1972).

    Article  Google Scholar 

  6. Schröder-Turk, G. E. et al. The chiral structure of porous chitin within the wing-scales of Callophrys rubi. J. Struct. Biol. 174, 290–295 (2011).

    Article  Google Scholar 

  7. Saba, M. et al. Circular dichroism in biological photonic crystals and cubic chiral nets. Phys. Rev. Lett. 106, 103902 (2011).

    ADS  Article  Google Scholar 

  8. Turner, M. D., Schröder-Turk, G. E. & Gu, M. Fabrication and characterization of three-dimensional biomimetic chiral composites. Opt. Express 19, 10001–10008 (2011).

    ADS  Article  Google Scholar 

  9. Oh, S. S., Demetriadou, A., Wuestner, S. & Hess, O. On the origin of chirality in nanoplasmonic gyroid metamaterials. Adv. Mater. 25, 612–617 (2012).

    Article  Google Scholar 

  10. Vignolini, S. et al. A 3D optical metamaterial made by self‐assembly. Adv. Mater. 24, OP23–OP27 (2012).

    Article  Google Scholar 

  11. Kuwata-Gonokami, M. et al. Giant optical activity in quasi-two-dimensional planar nanostructures. Phys. Rev. Lett. 95, 227401 (2005).

    ADS  Article  Google Scholar 

  12. Decker, M. et al. Strong optical activity from twisted-cross photonic metamaterials. Opt. Lett. 34, 2501–2503 (2009).

    ADS  Article  Google Scholar 

  13. Decker, M., Klein, M. W., Wegener, M. & Linden, S. Circular dichroism of planar chiral magnetic metamaterials. Opt. Lett. 32, 856–858 (2007).

    ADS  Article  Google Scholar 

  14. Plum, E. et al. Metamaterial with negative index due to chirality. Phys. Rev. B 79, 035407 (2009).

    ADS  Article  Google Scholar 

  15. Pendry, J. B. A chiral route to negative refraction. Science 306, 1353–1355 (2004).

    ADS  Article  Google Scholar 

  16. Liu, M., Zentgraf, T., Liu, Y., Bartal, G. & Zhang, X. Light-driven nanoscale plasmonic motors. Nature Nanotech. 5, 570–573 (2010).

    ADS  Article  Google Scholar 

  17. Thiel, M. et al. Polarization stop bands in chiral polymeric three-dimensional photonic crystals. Adv. Mater. 19, 207–210 (2007).

    Article  Google Scholar 

  18. Thiel, M., Fischer, H., Von Freymann, G. & Wegener, M. Three-dimensional chiral photonic superlattices. Opt. Lett. 35, 166–168 (2010).

    ADS  Article  Google Scholar 

  19. Lee, J. & Chan, C. Polarization gaps in spiral photonic crystals. Opt. Express 13, 8083–8088 (2005).

    ADS  Article  Google Scholar 

  20. Thiel, M., Rill, M. S., Freymann, G. & Wegener, M. Three-dimensional bi-chiral photonic crystals. Adv. Mater. 21, 4680–4682 (2009).

    Article  Google Scholar 

  21. Cao, W., Munoz, A., Palffy-Muhoray, P. & Taheri, B. Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II. Nature Mater. 1, 111–113 (2002).

    ADS  Article  Google Scholar 

  22. Kikuchi, H., Yokota, M., Hisakado, Y., Yang, H. & Kajiyama, T. Polymer-stabilized liquid crystal blue phases. Nature Mater. 1, 64–68 (2002).

    ADS  Article  Google Scholar 

  23. Coles, H. J. & Pivnenko, M. N. Liquid crystal blue phases with a wide temperature range. Nature 436, 997–1000 (2005).

    ADS  Article  Google Scholar 

  24. Michielsen, K. & Stavenga, D. G. Gyroid cuticular structures in butterfly wing scales: biological photonic crystals. J. R. Soc. Interface 5, 85–94 (2008).

    Article  Google Scholar 

  25. Saranathan, V. et al. Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales. Proc. Natl Acad. Sci. USA 107, 11676–11681 (2010).

    ADS  Article  Google Scholar 

  26. Mille, C., Tyrode, E. C. & Corkery, R. W. Inorganic chiral 3D photonic crystals with bicontinuous gyroid structure replicated from butterfly wing scales. Chem. Commun. 47, 9873–9875 (2011).

    Article  Google Scholar 

  27. Sun, H.-B., Tanaka, T. & Kawata, S. Three-dimensional focal spots related to two-photon excitation. Appl. Phys. Lett. 80, 3673–3675 (2002).

    ADS  Article  Google Scholar 

  28. Martinez-Corral, M., Ibáñez-López, C., Saavedra, G. & Caballero, M. T. Axial gain resolution in optical sectioning fluorescence microscopy by shaded-ring filters. Opt. Express 11, 1740–1745 (2003).

    ADS  Article  Google Scholar 

  29. Lin, H., Jia, B. & Gu, M. Generation of an axially super-resolved quasi-spherical focal spot using an amplitude-modulated radially polarized beam. Opt. Lett. 36, 2471–2473 (2011).

    ADS  Article  Google Scholar 

  30. Staude, I. et al. Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths. Opt. Lett. 35, 1094–1096 (2010).

    ADS  Article  Google Scholar 

  31. Nicoletti, E., Bulla, D., Luther-Davies, B. & Gu, M. Wide-angle stop-gap chalcogenide photonic crystals generated by direct multiple-line laser writing. Appl. Phys. B 105, 847–850 (2011).

    ADS  Article  Google Scholar 

  32. O'Brien, J. L., Furusawa, A. & Vuckovic, J. Photonic quantum technologies. Nature Photon. 3, 687–695 (2009).

    ADS  Article  Google Scholar 

  33. Vasilantonakis, N. et al. Three‐dimensional metallic photonic crystals with optical bandgaps. Adv. Mater. 24, 1101–1105 (2012).

    Article  Google Scholar 

Download references


This work was conducted by the Australian Research Council Centre of Excellence for Ultrahigh Bandwidth Devices for Optics Systems (project CE110001018). M.D.T. acknowledges an Australian postgraduate award and the Cooperative Research Center for Polymers for funding. G.E.S.T. acknowledges a travel stipend by the Deutscher Akademischer Austausch Dienst for a visit to Swinburne University of Technology. G.E.S.T. and M.S. acknowledge support by the Cluster of Excellence ‘Engineering of Advanced Materials’ funded by the German Science Foundation (DFG). The authors thank R. Buividas for help in cleaving the glass substrates, and M. Farsari and D. Terzaki from the IESL Foundation for Research & Technology, Greece, for providing the silicon–zirconium photoresist.

Author information

Authors and Affiliations



M.D.T. performed the numerical simulations, structural design, direct laser writing and experimental characterization. M.S. performed theoretical calculations. Q.Z. performed experimental characterization. B.C. suggested the galvo-dithering method and performed the substrate cleaving. G.E.S.T. and M.G. participated in the design of experiments and data analysis. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Min Gu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2036 kb)

Supplementary movie

Supplementary movie (WMV 4918 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Turner, M., Saba, M., Zhang, Q. et al. Miniature chiral beamsplitter based on gyroid photonic crystals. Nature Photon 7, 801–805 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing