Abstract
Layered superconductors such as the copper-oxide high-temperature superconductor Bi2Sr2CaCu2O8+δ are emerging as compact sources of coherent continuous-wave electromagnetic radiation in the subterahertz and terahertz frequency ranges. The basis of their operation is the Josephson effect, which intrinsically occurs between the superconducting layers. The Josephson effect naturally converts a direct-current voltage into a high-frequency electric current. Therefore, a unique property of the devices reviewed here is the wide tunability of their frequency by varying the bias voltage. Recently, emission powers of free-space radiation of several hundreds of microwatts and emission linewidths as low as 6 MHz at 600 GHz have been achieved. These devices are promising for new applications in imaging, medical diagnostics, spectroscopy and security.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Space-time crystalline order of a high-critical-temperature superconductor with intrinsic Josephson junctions
Nature Communications Open Access 15 October 2021
-
Emergence and control of complex behaviors in driven systems of interacting qubits with dissipation
npj Quantum Information Open Access 04 January 2021
-
Experimental realisation of tunable ferroelectric/superconductor $$({\text {B}} {\text {T}} {\text {O}}/{\text {Y}} {\text {B}}{\text {C}} {\text {O}})_{{\text {N}}}/{\text {S}}{\text {T}}{\text {O}}$$ 1D photonic crystals in the whole visible spectrum
Scientific Reports Open Access 04 August 2020
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Tonouchi, M. Cutting-edge terahertz technology. Nature Photon. 1, 97–105 (2007).
Abbott, D. & Zhang, X.-C. T-ray imaging, sensing, and retection. Proc. IEEE 95, 1509–1513 (2007).
Dobroiu, A., Otani, C. & Kawase, K. Terahertz-wave sources and imaging applications. Meas. Sci. Technol. 17, R161–R174 (2006).
Ferguson, B. & Zhang, X.-C. Materials for terahertz science and technology. Nature Mater. 1, 26–33 (2006).
Chan, W. L., Deibel, J. & Mittleman, D. M. Imaging with terahertz radiation. Rep. Prog. Phys. 70, 1325–1379 (2007).
Kleine-Ostmann, T. & Nagatsuma, T. A review on terahertz communications research. J. Infrared Millim. Te. Waves 32, 143–171 (2011).
Pickwell, E. & Wallace, V. P. Biomedical applications of terahertz technology. J. Phys. D 39, R301–R310 (2006).
Siegel, P. H. Terahertz technology in biology and medicine. IEEE Trans. Microwave Theory Tech. 52, 2438–2447 (2004).
Williams, B. S. Terahertz quantum-cascade lasers. Nature Photon. 1, 517–525 (2007).
Kumar, S. Recent progress in terahertz quantum cascade lasers. IEEE J. Sel. Top. Quant. Electron. 17, 38–47 (2011).
Asada, M., Suzuki, S. & Kishimoto, N. Resonant tunneling diodes for sub-terahertz and terahertz oscillators. Jpn. J. Appl. Phys. 47, 4375–4384 (2008).
Suzuki, S., Shiraishi, M., Shibayama, H. & Asada, M. High-power operation of terahertz oscillators with resonant tunneling diodes using impedance-matched antennas and array configuration. IEEE J. Sel. Top. Quant. Electron. 19, 8500108 (2013).
Josephson, B. D. Possible new effects in superconducting tunneling. Phys. Lett. 1, 251–253 (1962).
Van Duzer, T. & Turner, C. W. Principles of Superconductive Devices and Circuits (Elsevier, 1981).
Coon, D. D. & Fiske, M. D. Josephson ac and step structure in the supercurrent tunneling characteristic. Phys. Rev. 138, A744–A746 (1965).
Langenberg, D. N., Scalapino, D. J., Taylor, B. N. & Eck, R. E. Investigation of microwave radiation emitted by Josephson junctions. Phys. Rev. Lett. 15, 294–297 (1965).
Yanson, I. K., Svistunov, V. M. & Dmitrenk, I. M. Experimental observation of tunnel effect for cooper pairs with emission of photons. Sov. Phys. JETP-USSR 21, 650–652 (1965).
Koshelets, V. P. et al. An integrated 500 GHz receiver with superconducting local oscillator. IEEE Trans. Appl. Supercond. 7, 3589–3592 (1997).
Koshelets, V. P. & Shitov, S. V. Integrated superconducting receivers. Supercond. Sci. Technol. 13, R53–R69 (2000).
Barbara, P., Cawthorne, A. B., Shitov, S. V. & Lobb, C. J. Stimulated emission and amplification in Josephson junction arrays. Phys. Rev. Lett. 82, 1963–1966 (1999).
Darula, M., Doderer, T. & Beuven, S. Millimetre and sub-mm wavelength radiation sources based on discrete Josephson junction arrays. Supercond. Sci. Technol. 12, R1–R25 (1999).
Jain, A. K., Likharev, K. K., Lukens, J. E. & Sauvageau, J. E. Mutual phase-locking in Josephson junction arrays. Phys. Rep. 109, 309–426 (1984).
Booi, P. A. A. & Benz, S. P. Emission linewidth measurements of two-dimensional array Josephson oscillators. Appl. Phys. Lett. 64, 2163–2165 (1994).
Wiesenfeld, K., Benz, S. P. & Booi, P. A. A. Phase-locked oscillator optimization for arrays of Josephson junctions. J. Appl. Phys. 76, 3835–3846 (1994).
Han, S., Bi, B. K., Zhang, W. X. & Lukens, J. E. Demonstration of Josephson effect submillimeter wave sources with increased power. Appl. Phys. Lett. 64, 1424–1426 (1994).
Booi, P. A. A. & Benz, S. P. High power generation with distributed Josephson-junction arrays. Appl. Phys. Lett. 68, 3799–3801 (1996).
Tilley, D. R. Superradiance in arrays of superconducting weak links. Phys. Lett. A 33, 205–206 (1970).
Kleiner, R., Steinmeyer, F., Kunkel, G. & Müller, P. Intrinsic Josephson effects in Bi2Sr2CaCu2O8 single crystals. Phys. Rev. Lett. 68, 2394–2397 (1992).
Kleiner, R. & Müller, P. Intrinsic Josephson effects in high-T c superconductors. Phys. Rev. B 49, 1327–1341 (1994).
Schlenga, K. et al. Tunneling spectroscopy with intrinsic Josephson junctions in Bi2Sr2CaCu2O8+δ and Tl2Ba2Ca2Cu3O10+δ . Phys. Rev. B 57, 14518–14536 (1998).
Buckel, W. & Kleiner, R. Superconductivity (Wiley-VCH, 2004).
Barone, A. & Paternò, G. Physics and Applications of the Josephson Effect (Wiley, 1982).
Tachiki, M., Koyama, T. & Takahashi, S. Electromagnetic phenomena related to a low-frequency plasma in cuprate superconductors. Phys. Rev. B 50, 7065–7084 (1994).
Koyama, T. & Tachiki, M. Plasma excitation by vortex flow. Solid State Commun. 96, 367–371 (1995).
Tachiki, M., Iizuka, M., Minami, K., Tejima, S. & Nakamura, H. Emission of continuous coherent terahertz waves with tunable frequency by intrinsic Josephson junctions. Phys. Rev. B 71, 134515 (2005).
Koshelev, A. E. & Bulaevskii, L. N. Resonant electromagnetic emission from intrinsic Josephson-junction stacks with laterally modulated Josephson critical current. Phys. Rev. B 77, 014530 (2008).
Benseman, T. M. et al. Tunable terahertz emission from Bi2Sr2CaCu2O8+δ mesa devices. Phys. Rev. B 84, 064523 (2011).
Hu, X. & Lin, S.-Z. Phase dynamics in a stack of inductively coupled intrinsic Josephson junctions and terahertz electromagnetic radiation. Supercond. Sci. Technol. 23, 053001 (2010).
Lin, S.-Z. & Hu, X. Possible dynamic states in inductively coupled intrinsic Josephson junctions of layered high-T c superconductors. Phys. Rev. Lett. 100, 247006 (2008).
Koshelev, A. E. Alternating dynamic state self-generated by internal resonance in stacks of intrinsic Josephson junctions. Phys. Rev. B 78, 174509 (2008).
Krasnov, V. M. Terahertz electromagnetic radiation from intrinsic Josephson junctions at zero magnetic field via breather-type self-oscillations. Phys. Rev. B 83, 174517 (2011).
Ozyuzer, L. et al. Emission of coherent THz radiation from superconductors. Science 318, 1291–1293 (2007).
Kashiwagi, T. et al. High temperature superconductor terahertz emitters: fundamental physics and its applications. Jpn. J. Appl. Phys. 51, 010113 (2012).
Wang, H. B., Wu, P. H. & Yamashita, T. Stacks of intrinsic Josephson junctions singled out from inside Bi2Sr2CaCu2O8+x single crystals. Appl. Phys. Lett. 78, 4010–4012 (2001).
Klemm, R. A. et al. Cavity mode waves during terahertz radiation from rectangular Bi2Sr2CaCu2O8+δ mesas. J. Phys. Cond. Matt. 23, 025701 (2011).
Klemm, R. A. et al. Modeling the electromagnetic cavity mode contributions to the THz emission from triangular Bi2Sr2CaCu2O8+δ mesas. Physica C 491, 30–34 (2013).
Delfanazari, K. et al. Study of coherent and continuous terahertz wave emission in equilateral triangular mesas of superconducting Bi2Sr2CaCu2O8+δ intrinsic Josephson junctions. Physica C 491, 16–19 (2013).
An, D. Y. et al. Terahertz emission and detection both based on high-T c superconductors: towards an integrated receiver. Appl. Phys. Lett. 102, 092601 (2013).
Tsujimoto, M. et al. Geometrical resonance conditions for THz radiation from the intrinsic Josephson junctions in Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 105, 037005 (2010).
Tsujimoto, M. et al. Broadly tunable subterahertz emission from internal branches of the current-voltage characteristics of superconducting Bi2Sr2CaCu2O8+δ single crystals. Phys. Rev. Lett. 108, 107006 (2012).
Wang, H. B. et al. Coherent terahertz emission of intrinsic Josephson junction stacks in the hot spot regime. Phys. Rev. Lett. 105, 057002 (2010).
Filatrella, G., Pedersen, N. F. & Wiesenfeld, K. High-Q cavity-induced synchronization in oscillator arrays. Phys. Rev. E 61, 2513–2518 (2000).
Wang, H. B. et al. Hot spots and waves in Bi2Sr2CaCu2O8 intrinsic Josephson junction stacks: a study by low temperature scanning laser microscopy. Phys. Rev. Lett. 102, 017006 (2009).
Krasnov, V. M., Golod, T., Bauch, T. & Delsing, P. Anticorrelation between temperature and fluctuations of the switching current in moderately damped Josephson junctions. Phys. Rev. B 76, 224517 (2007).
Ben-Jacob, E., Bergman, D. J., Matkowsky, B. J. & Schuss, Z. Lifetime of oscillatory steady states. Phys. Rev. A 26, 2805–2816 (1982).
Gray, K. E. et al. Emission of terahertz waves from stacks of intrinsic Josephson junctions. IEEE Trans. Appl. Supercond. 19, 886–890 (2009).
Bulaevskii, L. N. & Koshelev, A. E. Radiation due to Josephson oscillations in layered superconductors. Phys. Rev. Lett. 99, 057002 (2007).
Yurgens, A. A. Intrinsic Josephson junctions: recent developments. Supercond. Sci. Technol. 13, R85–R100 (2000).
Krasnov, V. M., Yurgens, A., Winkler, D. & Delsing, P. Self-heating in small mesa structures. J. Appl. Phys. 89, 5578–5580 (2001).
Fenton, J. C. & Gough, C. E. Heating in mesa structures. J. Appl. Phys. 94, 4665–4669 (2003).
Zavaritsky, V. N. Essence of intrinsic tunneling: distinguishing intrinsic features from artifacts. Phys. Rev. B 72, 094503 (2005).
Krasnov, V. M., Sandberg, M. & Zogaj, I. In situ measurement of self-heating in intrinsic tunneling spectroscopy. Phys. Rev. Lett. 94, 077003 (2005).
Wang, H. B., Hatano, T., Yamashita, T., Wu, P. H. & Müller, P. Direct observation of self-heating in intrinsic Josephson junction array with a nanoelectrode in the middle. Appl. Phys. Lett. 86, 023504 (2005).
Bae, M.-H., Choi, J.-H. & Lee, H.-J. Heating-compensated constant-temperature tunneling measurements on stacks of Bi2Sr2CaCu2O8+x intrinsic junctions. Appl. Phys. Lett. 86, 232502 (2005).
Zhu, X. B. et al. Intrinsic tunneling spectroscopy of Bi2Sr2CaCu2O8+δ: the junction-size dependence of self-heating. Phys. Rev. B 73, 224501 (2006).
Kurter, C. et al. Counterintuitive consequence of heating in strongly-driven intrinsic junctions of Bi2Sr2CaCu2O8+δ mesas. Phys. Rev. B 81, 224518 (2010).
Krasnov, V. M. Comment on “Counterintuitive consequence of heating in strongly-driven intrinsic junctions of Bi2Sr2CaCu2O8+δ mesas”. Phys. Rev. B 84, 136501 (2011).
Yurgens, A. Temperature distribution in a large Bi2Sr2CaCu2O8+δ mesa. Phys. Rev. B 83, 184501 (2011).
Gross, B. et al. Hot-spot formation in stacks of intrinsic Josephson junctions in Bi2Sr2CaCu2O8 Phys. Rev. B 86, 094524 (2012).
Guénon, S. et al. Interaction of hot spots and terahertz waves in Bi2Sr2CaCu2O8 intrinsic Josephson junction stacks of various geometry. Phys. Rev. B 82, 214506 (2010).
Minami, H. et al. Local SiC photoluminescence evidence of non-mutualistic hot spot formation and sub-THz coherent emission from a rectangular Bi2Sr2CaCu2O8+δ mesa. Preprint at http://arxiv.org/abs/1307.3651 (2013).
Benseman, T. M. et al. Direct imaging of hot spots in Bi2Sr2CaCu2O8+δ mesa terahertz sources. J. Appl. Phys. 113, 133902 (2013).
Minami, H., Orita, N., Koike, T., Yamamoto, T. & Kadowaki, K. Continuous and reversible operation of Bi2212 based THz emitters just below T c . Physica C 470, S822–S823 (2010).
Li, M. et al. Linewidth dependence of coherent terahertz emission from Bi2Sr2CaCu2O8 intrinsic Josephson junction stacks in the hot-spot regime. Phys. Rev. B 86, 060505 (2012).
Benseman, T. M. et al. Powerful terahertz emission from Bi2Sr2CaCu2O8+δ mesa arrays. Appl. Phys. Lett. 103, 022602 (2013).
Yamaki, K. et al. High-power terahertz electro magnetic wave emission from high-Tc superconducting Bi2Sr2CaCu2O8+δ mesa structures. Opt. Express 19, 3193–3201 (2011).
Delfanazari, K. et al. Tunable terahertz emission from the intrinsic Josephson junctions in acute isosceles triangular Bi2Sr2CaCu2O8+δ mesas. Opt. Express 21, 2171–2184 (2013).
Wang, H. B. et al. in Proc. 37th Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IEEE, 2012).
Larkin, A. I. & Ovchinnikov, Y. I. Radiation line width in the Josephson effect. Sov. Phys. JETP 26, 1219–1221 (1968).
Dahm, A. J. et al. Linewidth of the radiation emitted by a Josephson junction. Phys. Rev. Lett. 22, 1416–1420 (1969).
Koshelets, V. P. et al. Self-pumping effects and radiation linewidth of Josephson flux-flow oscillators. Phys. Rev. B 56, 5572–5577 (1997).
Lin, S.-Z. & Koshelev, A. E. Linewidth of the electromagnetic radiation from Josephson junctions near cavity resonances. Phys. Rev. B 87, 214511 (2013).
Hadley, P., Beasley, M. R. & Wiesenfeld, K. Phase locking of Josephson-junction series arrays. Phys. Rev. B 38, 8712–8719 (1988).
Batov, I. E. et al. Detection of 0.5 THz radiation from intrinsic Bi2Sr2CaCu2O8 Josephson junctions. Appl. Phys. Lett. 88, 262504 (2006).
Bae, M.-H., Lee, H.-J. & Choi, J.-H. Josephson-vortex-flow terahertz emission in layered high-T c superconducting single crystals. Phys. Rev. Lett. 98, 027002 (2007).
Klemm, R. A. & Kadowaki, K. Output from a Josephson stimulated terahertz amplified radiation emitter. J. Phys. Condens. Matter 22, 375701 (2010).
Turkoglu, F. et al. Interferometer measurements of terahertz waves from Bi2Sr2CaCu2O8+d mesas. Supercond. Sci. Technol. 25, 125004 (2012).
Kadowaki, K. et al. Quantum terahertz electronics (QTE) using coherent radiation from high temperature superconducting Bi2Sr2CaCu2O8+δ intrinsic Josephson junctions. Physica C 491, 2–6 (2013).
Orita, N., Minami, H., Koike, T., Yamamoto, T. & Kadowaki, K. Synchronized operation of two serially connected Bi2212 THz emitters. Physica C 470, S786–S787 (2010).
Lin, S.-Z. & Koshelev, A. E. Synchronization of Josephson oscillations in a mesa array of Bi2Sr2CaCu2O8+ δ through the Josephson plasma waves in the base crystal. Physica C 491, 24–29 (2013).
Tsujimoto, M. et al. Terahertz imaging system using high-T c superconducting oscillation devices. J. Appl. Phys. 111, 123111 (2012).
Wang, H. B., Wu, P. H. & Yamashita, T. Terahertz responses of intrinsic Josephson junctions in high T c superconductors. Phys. Rev. Lett. 87, 107002 (2001).
Motzkau, H., Katterwe, S. O., Rydh, A. & Krasnov, V. M. Strong polaritonic interaction between flux-flow and phonon resonances in Bi2Sr2CaCu2O8+x intrinsic Josephson junctions: angular dependence and the alignment procedure. Physica C 491, 51–55 (2013).
Tinkham, M. Introduction to Superconductivity (McGraw-Hill, 1996).
Cirillo, M., Grønbech-Jensen, N., Samuelson, M. R., Salerno, M. & Rinati, G. V. Fiske modes and Eck steps in long Josephson junctions: theory and experiments. Phys. Rev. B 58, 12377–12384 (1998).
Irie, A., Hirai, Y. & Oya, G. Fiske and flux-flow modes of the intrinsic Josephson junctions in Bi2Sr2CaCu2Oy mesas. Appl. Phys. Lett. 72, 2159–2161 (1998).
Krasnov, V. M., Mros, N., Yurgens, A. & Winkler, D. Fiske steps in intrinsic Bi2Sr2CaCu2O8+x stacked Josephson junctions. Phys. Rev. B 59, 8463–8466 (1999).
Sakai, S., Bodin, P. & Pedersen, N. F. Fluxons in thin-film superconductor-insulator superlattices. J. Appl. Phys. 73, 2411–2418 (1993).
Kleiner, R., Müller, P., Kohlstedt, H., Pedersen, N. F. & Sakai, S. Dynamic behavior of Josephson-coupled layered structures. Phys. Rev. B 50, 3942–3952 (1994).
Bulaevskii, L. N., Zamora, M., Baeriswyl, D., Beck, H. & Clem, J. R. Time-dependent equations for phase differences and a collective mode in Josephson-coupled layered superconductors. Phys. Rev. B 50, 12831–12834 (1994).
Bulaevskii, L. N., Dominguez, D., Maley, M. P. & Bishop, A. R. Josephson plasma mode in the mixed state of long-junction and layered superconductors. Phys. Rev. B 55, 8482–8489 (1997).
Pedersen, N. F. & Sakai, S. Josephson plasma resonance in superconducting multilayers. Phys. Rev. B 58, 2820–2826 (1998).
Hechtfischer, G., Kleiner, R., Ustinov, A. V. & Müller, P. Josephson vortex motion in stacks of intrinsic Josephson junctions in Bi2Sr2CaCu2O8+x . Appl. Supercond. 5, 303–312 (1997).
Koshelev, A. E. & Aranson, I. S. Resonances, instabilities, and structure selection of driven Josephson lattice in layered superconductors. Phys. Rev. Lett. 85, 3938–3941 (2000).
Ooi, S., Mochiku, T. & Hirata, K. Periodic oscillations of Josephson-vortex flow resistance in Bi2Sr2CaCu2O8+y . Phys. Rev. Lett. 89, 247002 (2002).
Koshelev, A. E. Edge critical currents of dense Josephson vortex lattice in layered superconductors. Phys. Rev. B 66, 224514 (2002).
Kim, S. M. et al. Fiske steps studied by flux-flow resistance oscillation in a narrow stack of Bi2Sr2CaCu2O8+δ junctions. Phys. Rev. B 72, 140504 (2005).
Machida, M. Effects of edge boundaries on Josephson vortices in finite-size layered high-T c superconductors. Phys. Rev. Lett. 96, 097002 (2006).
Kakeya, I. et al. Scaling behavior of the crossover to short-stack regimes of Josephson vortex lattices in Bi2Sr2CaCu2O8+δ stacks. Phys. Rev. B 79, 212503 (2009).
Katterwe, S. O. & Krasnov, V. M. Stabilization of the in-phase fluxon state by geometrical confinement in small Bi2Sr2CaCu2O8+x mesa structures. Phys. Rev. B 80, 020502 (2009).
Kleiner, R. Two-dimensional resonant modes in stacked Josephson junctions. Phys. Rev. B 50, 6919–6922 (1994).
Acknowledgements
The authors thank W. K. Kwok, A. E. Koshelev, T. Benseman, B. Gross, H. B. Wang, V. P. Koshelets, R. G. Mints, D. Koelle, T. Kashiwagi, I. Kakeya, T. Yamamoto, R. A. Klemm, M. Tsujimoto, H. Minami and M. Tachiki for many helpful discussions. U.W. acknowledges support from the U.S. Department of Energy (BES), K.K. acknowledges support from the Japanese Society for the Promotion of Science (JSPS) and the Japan Science and Technology Agency (JST), and R.K. acknowledges support from Deutsche Forschungsgemeinschaft (DFG).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
U.W. is a named inventor on three patents (US patents 7,610,071, 7,715,892 and 8,026,487) related to superconducting THz sources. K.K. is a named inventor on two patents (Japanese patents 5229859 and 5229876) related to superconducting THz sources and three patent applications (application numbers 2008-066110, 2008-186590 and 2012-031205).
Rights and permissions
About this article
Cite this article
Welp, U., Kadowaki, K. & Kleiner, R. Superconducting emitters of THz radiation. Nature Photon 7, 702–710 (2013). https://doi.org/10.1038/nphoton.2013.216
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2013.216
This article is cited by
-
Embedding nonlinear systems with two or more harmonic phase terms near the Hopf–Hopf bifurcation
Nonlinear Dynamics (2023)
-
Erratum to: Terahertz spectroscopy of high temperature superconductors and their photonic applications
Journal of the Korean Physical Society (2022)
-
Terahertz spectroscopy of high temperature superconductors and their photonic applications
Journal of the Korean Physical Society (2022)
-
Space-time crystalline order of a high-critical-temperature superconductor with intrinsic Josephson junctions
Nature Communications (2021)
-
Emergence and control of complex behaviors in driven systems of interacting qubits with dissipation
npj Quantum Information (2021)