Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Superconducting emitters of THz radiation

Abstract

Layered superconductors such as the copper-oxide high-temperature superconductor Bi2Sr2CaCu2O8+δ are emerging as compact sources of coherent continuous-wave electromagnetic radiation in the subterahertz and terahertz frequency ranges. The basis of their operation is the Josephson effect, which intrinsically occurs between the superconducting layers. The Josephson effect naturally converts a direct-current voltage into a high-frequency electric current. Therefore, a unique property of the devices reviewed here is the wide tunability of their frequency by varying the bias voltage. Recently, emission powers of free-space radiation of several hundreds of microwatts and emission linewidths as low as 6 MHz at 600 GHz have been achieved. These devices are promising for new applications in imaging, medical diagnostics, spectroscopy and security.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intrinsic Josephson junctions and THz emission from BSCCO.
Figure 2: Tunable THz emission from BSCCO resonators.
Figure 3: Hot-spot formation.
Figure 4: Emission linewidth and tunability in the hot-spot regime.
Figure 5: THz imaging.

Similar content being viewed by others

References

  1. Tonouchi, M. Cutting-edge terahertz technology. Nature Photon. 1, 97–105 (2007).

    Article  ADS  Google Scholar 

  2. Abbott, D. & Zhang, X.-C. T-ray imaging, sensing, and retection. Proc. IEEE 95, 1509–1513 (2007).

    Article  Google Scholar 

  3. Dobroiu, A., Otani, C. & Kawase, K. Terahertz-wave sources and imaging applications. Meas. Sci. Technol. 17, R161–R174 (2006).

    Article  ADS  Google Scholar 

  4. Ferguson, B. & Zhang, X.-C. Materials for terahertz science and technology. Nature Mater. 1, 26–33 (2006).

    Article  ADS  Google Scholar 

  5. Chan, W. L., Deibel, J. & Mittleman, D. M. Imaging with terahertz radiation. Rep. Prog. Phys. 70, 1325–1379 (2007).

    Article  ADS  Google Scholar 

  6. Kleine-Ostmann, T. & Nagatsuma, T. A review on terahertz communications research. J. Infrared Millim. Te. Waves 32, 143–171 (2011).

    Article  Google Scholar 

  7. Pickwell, E. & Wallace, V. P. Biomedical applications of terahertz technology. J. Phys. D 39, R301–R310 (2006).

    Article  ADS  Google Scholar 

  8. Siegel, P. H. Terahertz technology in biology and medicine. IEEE Trans. Microwave Theory Tech. 52, 2438–2447 (2004).

    Article  ADS  Google Scholar 

  9. Williams, B. S. Terahertz quantum-cascade lasers. Nature Photon. 1, 517–525 (2007).

    Article  ADS  Google Scholar 

  10. Kumar, S. Recent progress in terahertz quantum cascade lasers. IEEE J. Sel. Top. Quant. Electron. 17, 38–47 (2011).

    Article  ADS  Google Scholar 

  11. Asada, M., Suzuki, S. & Kishimoto, N. Resonant tunneling diodes for sub-terahertz and terahertz oscillators. Jpn. J. Appl. Phys. 47, 4375–4384 (2008).

    Article  ADS  Google Scholar 

  12. Suzuki, S., Shiraishi, M., Shibayama, H. & Asada, M. High-power operation of terahertz oscillators with resonant tunneling diodes using impedance-matched antennas and array configuration. IEEE J. Sel. Top. Quant. Electron. 19, 8500108 (2013).

    Article  ADS  Google Scholar 

  13. Josephson, B. D. Possible new effects in superconducting tunneling. Phys. Lett. 1, 251–253 (1962).

    Article  ADS  MATH  Google Scholar 

  14. Van Duzer, T. & Turner, C. W. Principles of Superconductive Devices and Circuits (Elsevier, 1981).

    Google Scholar 

  15. Coon, D. D. & Fiske, M. D. Josephson ac and step structure in the supercurrent tunneling characteristic. Phys. Rev. 138, A744–A746 (1965).

    Article  ADS  Google Scholar 

  16. Langenberg, D. N., Scalapino, D. J., Taylor, B. N. & Eck, R. E. Investigation of microwave radiation emitted by Josephson junctions. Phys. Rev. Lett. 15, 294–297 (1965).

    Article  ADS  Google Scholar 

  17. Yanson, I. K., Svistunov, V. M. & Dmitrenk, I. M. Experimental observation of tunnel effect for cooper pairs with emission of photons. Sov. Phys. JETP-USSR 21, 650–652 (1965).

    ADS  Google Scholar 

  18. Koshelets, V. P. et al. An integrated 500 GHz receiver with superconducting local oscillator. IEEE Trans. Appl. Supercond. 7, 3589–3592 (1997).

    Article  ADS  Google Scholar 

  19. Koshelets, V. P. & Shitov, S. V. Integrated superconducting receivers. Supercond. Sci. Technol. 13, R53–R69 (2000).

    Article  ADS  Google Scholar 

  20. Barbara, P., Cawthorne, A. B., Shitov, S. V. & Lobb, C. J. Stimulated emission and amplification in Josephson junction arrays. Phys. Rev. Lett. 82, 1963–1966 (1999).

    Article  ADS  Google Scholar 

  21. Darula, M., Doderer, T. & Beuven, S. Millimetre and sub-mm wavelength radiation sources based on discrete Josephson junction arrays. Supercond. Sci. Technol. 12, R1–R25 (1999).

    Article  Google Scholar 

  22. Jain, A. K., Likharev, K. K., Lukens, J. E. & Sauvageau, J. E. Mutual phase-locking in Josephson junction arrays. Phys. Rep. 109, 309–426 (1984).

    Article  ADS  Google Scholar 

  23. Booi, P. A. A. & Benz, S. P. Emission linewidth measurements of two-dimensional array Josephson oscillators. Appl. Phys. Lett. 64, 2163–2165 (1994).

    Article  ADS  Google Scholar 

  24. Wiesenfeld, K., Benz, S. P. & Booi, P. A. A. Phase-locked oscillator optimization for arrays of Josephson junctions. J. Appl. Phys. 76, 3835–3846 (1994).

    Article  ADS  Google Scholar 

  25. Han, S., Bi, B. K., Zhang, W. X. & Lukens, J. E. Demonstration of Josephson effect submillimeter wave sources with increased power. Appl. Phys. Lett. 64, 1424–1426 (1994).

    Article  ADS  Google Scholar 

  26. Booi, P. A. A. & Benz, S. P. High power generation with distributed Josephson-junction arrays. Appl. Phys. Lett. 68, 3799–3801 (1996).

    Article  ADS  Google Scholar 

  27. Tilley, D. R. Superradiance in arrays of superconducting weak links. Phys. Lett. A 33, 205–206 (1970).

    Article  ADS  Google Scholar 

  28. Kleiner, R., Steinmeyer, F., Kunkel, G. & Müller, P. Intrinsic Josephson effects in Bi2Sr2CaCu2O8 single crystals. Phys. Rev. Lett. 68, 2394–2397 (1992).

    Article  ADS  Google Scholar 

  29. Kleiner, R. & Müller, P. Intrinsic Josephson effects in high-T c superconductors. Phys. Rev. B 49, 1327–1341 (1994).

    Article  ADS  Google Scholar 

  30. Schlenga, K. et al. Tunneling spectroscopy with intrinsic Josephson junctions in Bi2Sr2CaCu2O8+δ and Tl2Ba2Ca2Cu3O10+δ . Phys. Rev. B 57, 14518–14536 (1998).

    Article  ADS  Google Scholar 

  31. Buckel, W. & Kleiner, R. Superconductivity (Wiley-VCH, 2004).

    Book  Google Scholar 

  32. Barone, A. & Paternò, G. Physics and Applications of the Josephson Effect (Wiley, 1982).

    Book  Google Scholar 

  33. Tachiki, M., Koyama, T. & Takahashi, S. Electromagnetic phenomena related to a low-frequency plasma in cuprate superconductors. Phys. Rev. B 50, 7065–7084 (1994).

    Article  ADS  Google Scholar 

  34. Koyama, T. & Tachiki, M. Plasma excitation by vortex flow. Solid State Commun. 96, 367–371 (1995).

    Article  ADS  Google Scholar 

  35. Tachiki, M., Iizuka, M., Minami, K., Tejima, S. & Nakamura, H. Emission of continuous coherent terahertz waves with tunable frequency by intrinsic Josephson junctions. Phys. Rev. B 71, 134515 (2005).

    Article  ADS  Google Scholar 

  36. Koshelev, A. E. & Bulaevskii, L. N. Resonant electromagnetic emission from intrinsic Josephson-junction stacks with laterally modulated Josephson critical current. Phys. Rev. B 77, 014530 (2008).

    Article  ADS  Google Scholar 

  37. Benseman, T. M. et al. Tunable terahertz emission from Bi2Sr2CaCu2O8+δ mesa devices. Phys. Rev. B 84, 064523 (2011).

    Article  ADS  Google Scholar 

  38. Hu, X. & Lin, S.-Z. Phase dynamics in a stack of inductively coupled intrinsic Josephson junctions and terahertz electromagnetic radiation. Supercond. Sci. Technol. 23, 053001 (2010).

    Article  ADS  Google Scholar 

  39. Lin, S.-Z. & Hu, X. Possible dynamic states in inductively coupled intrinsic Josephson junctions of layered high-T c superconductors. Phys. Rev. Lett. 100, 247006 (2008).

    Article  ADS  Google Scholar 

  40. Koshelev, A. E. Alternating dynamic state self-generated by internal resonance in stacks of intrinsic Josephson junctions. Phys. Rev. B 78, 174509 (2008).

    Article  ADS  Google Scholar 

  41. Krasnov, V. M. Terahertz electromagnetic radiation from intrinsic Josephson junctions at zero magnetic field via breather-type self-oscillations. Phys. Rev. B 83, 174517 (2011).

    Article  ADS  Google Scholar 

  42. Ozyuzer, L. et al. Emission of coherent THz radiation from superconductors. Science 318, 1291–1293 (2007).

    Article  ADS  Google Scholar 

  43. Kashiwagi, T. et al. High temperature superconductor terahertz emitters: fundamental physics and its applications. Jpn. J. Appl. Phys. 51, 010113 (2012).

    Article  ADS  Google Scholar 

  44. Wang, H. B., Wu, P. H. & Yamashita, T. Stacks of intrinsic Josephson junctions singled out from inside Bi2Sr2CaCu2O8+x single crystals. Appl. Phys. Lett. 78, 4010–4012 (2001).

    Article  ADS  Google Scholar 

  45. Klemm, R. A. et al. Cavity mode waves during terahertz radiation from rectangular Bi2Sr2CaCu2O8+δ mesas. J. Phys. Cond. Matt. 23, 025701 (2011).

    Article  ADS  Google Scholar 

  46. Klemm, R. A. et al. Modeling the electromagnetic cavity mode contributions to the THz emission from triangular Bi2Sr2CaCu2O8+δ mesas. Physica C 491, 30–34 (2013).

    Article  ADS  Google Scholar 

  47. Delfanazari, K. et al. Study of coherent and continuous terahertz wave emission in equilateral triangular mesas of superconducting Bi2Sr2CaCu2O8+δ intrinsic Josephson junctions. Physica C 491, 16–19 (2013).

    Article  ADS  Google Scholar 

  48. An, D. Y. et al. Terahertz emission and detection both based on high-T c superconductors: towards an integrated receiver. Appl. Phys. Lett. 102, 092601 (2013).

    Article  ADS  Google Scholar 

  49. Tsujimoto, M. et al. Geometrical resonance conditions for THz radiation from the intrinsic Josephson junctions in Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 105, 037005 (2010).

    Article  ADS  Google Scholar 

  50. Tsujimoto, M. et al. Broadly tunable subterahertz emission from internal branches of the current-voltage characteristics of superconducting Bi2Sr2CaCu2O8+δ single crystals. Phys. Rev. Lett. 108, 107006 (2012).

    Article  ADS  Google Scholar 

  51. Wang, H. B. et al. Coherent terahertz emission of intrinsic Josephson junction stacks in the hot spot regime. Phys. Rev. Lett. 105, 057002 (2010).

    Article  ADS  Google Scholar 

  52. Filatrella, G., Pedersen, N. F. & Wiesenfeld, K. High-Q cavity-induced synchronization in oscillator arrays. Phys. Rev. E 61, 2513–2518 (2000).

    Article  ADS  Google Scholar 

  53. Wang, H. B. et al. Hot spots and waves in Bi2Sr2CaCu2O8 intrinsic Josephson junction stacks: a study by low temperature scanning laser microscopy. Phys. Rev. Lett. 102, 017006 (2009).

    Article  ADS  Google Scholar 

  54. Krasnov, V. M., Golod, T., Bauch, T. & Delsing, P. Anticorrelation between temperature and fluctuations of the switching current in moderately damped Josephson junctions. Phys. Rev. B 76, 224517 (2007).

    Article  ADS  Google Scholar 

  55. Ben-Jacob, E., Bergman, D. J., Matkowsky, B. J. & Schuss, Z. Lifetime of oscillatory steady states. Phys. Rev. A 26, 2805–2816 (1982).

    Article  ADS  Google Scholar 

  56. Gray, K. E. et al. Emission of terahertz waves from stacks of intrinsic Josephson junctions. IEEE Trans. Appl. Supercond. 19, 886–890 (2009).

    Article  ADS  Google Scholar 

  57. Bulaevskii, L. N. & Koshelev, A. E. Radiation due to Josephson oscillations in layered superconductors. Phys. Rev. Lett. 99, 057002 (2007).

    Article  ADS  Google Scholar 

  58. Yurgens, A. A. Intrinsic Josephson junctions: recent developments. Supercond. Sci. Technol. 13, R85–R100 (2000).

    Article  ADS  Google Scholar 

  59. Krasnov, V. M., Yurgens, A., Winkler, D. & Delsing, P. Self-heating in small mesa structures. J. Appl. Phys. 89, 5578–5580 (2001).

    Article  ADS  Google Scholar 

  60. Fenton, J. C. & Gough, C. E. Heating in mesa structures. J. Appl. Phys. 94, 4665–4669 (2003).

    Article  ADS  Google Scholar 

  61. Zavaritsky, V. N. Essence of intrinsic tunneling: distinguishing intrinsic features from artifacts. Phys. Rev. B 72, 094503 (2005).

    Article  ADS  Google Scholar 

  62. Krasnov, V. M., Sandberg, M. & Zogaj, I. In situ measurement of self-heating in intrinsic tunneling spectroscopy. Phys. Rev. Lett. 94, 077003 (2005).

    Article  ADS  Google Scholar 

  63. Wang, H. B., Hatano, T., Yamashita, T., Wu, P. H. & Müller, P. Direct observation of self-heating in intrinsic Josephson junction array with a nanoelectrode in the middle. Appl. Phys. Lett. 86, 023504 (2005).

    Article  ADS  Google Scholar 

  64. Bae, M.-H., Choi, J.-H. & Lee, H.-J. Heating-compensated constant-temperature tunneling measurements on stacks of Bi2Sr2CaCu2O8+x intrinsic junctions. Appl. Phys. Lett. 86, 232502 (2005).

    Article  ADS  Google Scholar 

  65. Zhu, X. B. et al. Intrinsic tunneling spectroscopy of Bi2Sr2CaCu2O8+δ: the junction-size dependence of self-heating. Phys. Rev. B 73, 224501 (2006).

    Article  ADS  Google Scholar 

  66. Kurter, C. et al. Counterintuitive consequence of heating in strongly-driven intrinsic junctions of Bi2Sr2CaCu2O8+δ mesas. Phys. Rev. B 81, 224518 (2010).

    Article  ADS  Google Scholar 

  67. Krasnov, V. M. Comment on “Counterintuitive consequence of heating in strongly-driven intrinsic junctions of Bi2Sr2CaCu2O8+δ mesas”. Phys. Rev. B 84, 136501 (2011).

    Article  ADS  Google Scholar 

  68. Yurgens, A. Temperature distribution in a large Bi2Sr2CaCu2O8+δ mesa. Phys. Rev. B 83, 184501 (2011).

    Article  ADS  Google Scholar 

  69. Gross, B. et al. Hot-spot formation in stacks of intrinsic Josephson junctions in Bi2Sr2CaCu2O8 Phys. Rev. B 86, 094524 (2012).

    Article  ADS  Google Scholar 

  70. Guénon, S. et al. Interaction of hot spots and terahertz waves in Bi2Sr2CaCu2O8 intrinsic Josephson junction stacks of various geometry. Phys. Rev. B 82, 214506 (2010).

    Article  ADS  Google Scholar 

  71. Minami, H. et al. Local SiC photoluminescence evidence of non-mutualistic hot spot formation and sub-THz coherent emission from a rectangular Bi2Sr2CaCu2O8+δ mesa. Preprint at http://arxiv.org/abs/1307.3651 (2013).

  72. Benseman, T. M. et al. Direct imaging of hot spots in Bi2Sr2CaCu2O8+δ mesa terahertz sources. J. Appl. Phys. 113, 133902 (2013).

    Article  ADS  Google Scholar 

  73. Minami, H., Orita, N., Koike, T., Yamamoto, T. & Kadowaki, K. Continuous and reversible operation of Bi2212 based THz emitters just below T c . Physica C 470, S822–S823 (2010).

    Article  ADS  Google Scholar 

  74. Li, M. et al. Linewidth dependence of coherent terahertz emission from Bi2Sr2CaCu2O8 intrinsic Josephson junction stacks in the hot-spot regime. Phys. Rev. B 86, 060505 (2012).

    Article  ADS  Google Scholar 

  75. Benseman, T. M. et al. Powerful terahertz emission from Bi2Sr2CaCu2O8+δ mesa arrays. Appl. Phys. Lett. 103, 022602 (2013).

    Article  ADS  Google Scholar 

  76. Yamaki, K. et al. High-power terahertz electro magnetic wave emission from high-Tc superconducting Bi2Sr2CaCu2O8+δ mesa structures. Opt. Express 19, 3193–3201 (2011).

    Article  ADS  Google Scholar 

  77. Delfanazari, K. et al. Tunable terahertz emission from the intrinsic Josephson junctions in acute isosceles triangular Bi2Sr2CaCu2O8+δ mesas. Opt. Express 21, 2171–2184 (2013).

    Article  ADS  Google Scholar 

  78. Wang, H. B. et al. in Proc. 37th Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IEEE, 2012).

    Google Scholar 

  79. Larkin, A. I. & Ovchinnikov, Y. I. Radiation line width in the Josephson effect. Sov. Phys. JETP 26, 1219–1221 (1968).

    ADS  Google Scholar 

  80. Dahm, A. J. et al. Linewidth of the radiation emitted by a Josephson junction. Phys. Rev. Lett. 22, 1416–1420 (1969).

    Article  ADS  Google Scholar 

  81. Koshelets, V. P. et al. Self-pumping effects and radiation linewidth of Josephson flux-flow oscillators. Phys. Rev. B 56, 5572–5577 (1997).

    Article  ADS  Google Scholar 

  82. Lin, S.-Z. & Koshelev, A. E. Linewidth of the electromagnetic radiation from Josephson junctions near cavity resonances. Phys. Rev. B 87, 214511 (2013).

    Article  ADS  Google Scholar 

  83. Hadley, P., Beasley, M. R. & Wiesenfeld, K. Phase locking of Josephson-junction series arrays. Phys. Rev. B 38, 8712–8719 (1988).

    Article  ADS  Google Scholar 

  84. Batov, I. E. et al. Detection of 0.5 THz radiation from intrinsic Bi2Sr2CaCu2O8 Josephson junctions. Appl. Phys. Lett. 88, 262504 (2006).

    Article  ADS  Google Scholar 

  85. Bae, M.-H., Lee, H.-J. & Choi, J.-H. Josephson-vortex-flow terahertz emission in layered high-T c superconducting single crystals. Phys. Rev. Lett. 98, 027002 (2007).

    Article  ADS  Google Scholar 

  86. Klemm, R. A. & Kadowaki, K. Output from a Josephson stimulated terahertz amplified radiation emitter. J. Phys. Condens. Matter 22, 375701 (2010).

    Article  Google Scholar 

  87. Turkoglu, F. et al. Interferometer measurements of terahertz waves from Bi2Sr2CaCu2O8+d mesas. Supercond. Sci. Technol. 25, 125004 (2012).

    Article  Google Scholar 

  88. Kadowaki, K. et al. Quantum terahertz electronics (QTE) using coherent radiation from high temperature superconducting Bi2Sr2CaCu2O8+δ intrinsic Josephson junctions. Physica C 491, 2–6 (2013).

    Article  ADS  Google Scholar 

  89. Orita, N., Minami, H., Koike, T., Yamamoto, T. & Kadowaki, K. Synchronized operation of two serially connected Bi2212 THz emitters. Physica C 470, S786–S787 (2010).

    Article  ADS  Google Scholar 

  90. Lin, S.-Z. & Koshelev, A. E. Synchronization of Josephson oscillations in a mesa array of Bi2Sr2CaCu2O8+ δ through the Josephson plasma waves in the base crystal. Physica C 491, 24–29 (2013).

    Article  ADS  Google Scholar 

  91. Tsujimoto, M. et al. Terahertz imaging system using high-T c superconducting oscillation devices. J. Appl. Phys. 111, 123111 (2012).

    Article  ADS  Google Scholar 

  92. Wang, H. B., Wu, P. H. & Yamashita, T. Terahertz responses of intrinsic Josephson junctions in high T c superconductors. Phys. Rev. Lett. 87, 107002 (2001).

    Article  ADS  Google Scholar 

  93. Motzkau, H., Katterwe, S. O., Rydh, A. & Krasnov, V. M. Strong polaritonic interaction between flux-flow and phonon resonances in Bi2Sr2CaCu2O8+x intrinsic Josephson junctions: angular dependence and the alignment procedure. Physica C 491, 51–55 (2013).

    Article  ADS  Google Scholar 

  94. Tinkham, M. Introduction to Superconductivity (McGraw-Hill, 1996).

    Google Scholar 

  95. Cirillo, M., Grønbech-Jensen, N., Samuelson, M. R., Salerno, M. & Rinati, G. V. Fiske modes and Eck steps in long Josephson junctions: theory and experiments. Phys. Rev. B 58, 12377–12384 (1998).

    Article  ADS  Google Scholar 

  96. Irie, A., Hirai, Y. & Oya, G. Fiske and flux-flow modes of the intrinsic Josephson junctions in Bi2Sr2CaCu2Oy mesas. Appl. Phys. Lett. 72, 2159–2161 (1998).

    Article  ADS  Google Scholar 

  97. Krasnov, V. M., Mros, N., Yurgens, A. & Winkler, D. Fiske steps in intrinsic Bi2Sr2CaCu2O8+x stacked Josephson junctions. Phys. Rev. B 59, 8463–8466 (1999).

    Article  ADS  Google Scholar 

  98. Sakai, S., Bodin, P. & Pedersen, N. F. Fluxons in thin-film superconductor-insulator superlattices. J. Appl. Phys. 73, 2411–2418 (1993).

    Article  ADS  Google Scholar 

  99. Kleiner, R., Müller, P., Kohlstedt, H., Pedersen, N. F. & Sakai, S. Dynamic behavior of Josephson-coupled layered structures. Phys. Rev. B 50, 3942–3952 (1994).

    Article  ADS  Google Scholar 

  100. Bulaevskii, L. N., Zamora, M., Baeriswyl, D., Beck, H. & Clem, J. R. Time-dependent equations for phase differences and a collective mode in Josephson-coupled layered superconductors. Phys. Rev. B 50, 12831–12834 (1994).

    Article  ADS  Google Scholar 

  101. Bulaevskii, L. N., Dominguez, D., Maley, M. P. & Bishop, A. R. Josephson plasma mode in the mixed state of long-junction and layered superconductors. Phys. Rev. B 55, 8482–8489 (1997).

    Article  ADS  Google Scholar 

  102. Pedersen, N. F. & Sakai, S. Josephson plasma resonance in superconducting multilayers. Phys. Rev. B 58, 2820–2826 (1998).

    Article  ADS  Google Scholar 

  103. Hechtfischer, G., Kleiner, R., Ustinov, A. V. & Müller, P. Josephson vortex motion in stacks of intrinsic Josephson junctions in Bi2Sr2CaCu2O8+x . Appl. Supercond. 5, 303–312 (1997).

    Article  Google Scholar 

  104. Koshelev, A. E. & Aranson, I. S. Resonances, instabilities, and structure selection of driven Josephson lattice in layered superconductors. Phys. Rev. Lett. 85, 3938–3941 (2000).

    Article  ADS  Google Scholar 

  105. Ooi, S., Mochiku, T. & Hirata, K. Periodic oscillations of Josephson-vortex flow resistance in Bi2Sr2CaCu2O8+y . Phys. Rev. Lett. 89, 247002 (2002).

    Article  ADS  Google Scholar 

  106. Koshelev, A. E. Edge critical currents of dense Josephson vortex lattice in layered superconductors. Phys. Rev. B 66, 224514 (2002).

    Article  ADS  Google Scholar 

  107. Kim, S. M. et al. Fiske steps studied by flux-flow resistance oscillation in a narrow stack of Bi2Sr2CaCu2O8+δ junctions. Phys. Rev. B 72, 140504 (2005).

    Article  ADS  Google Scholar 

  108. Machida, M. Effects of edge boundaries on Josephson vortices in finite-size layered high-T c superconductors. Phys. Rev. Lett. 96, 097002 (2006).

    Article  ADS  Google Scholar 

  109. Kakeya, I. et al. Scaling behavior of the crossover to short-stack regimes of Josephson vortex lattices in Bi2Sr2CaCu2O8+δ stacks. Phys. Rev. B 79, 212503 (2009).

    Article  ADS  Google Scholar 

  110. Katterwe, S. O. & Krasnov, V. M. Stabilization of the in-phase fluxon state by geometrical confinement in small Bi2Sr2CaCu2O8+x mesa structures. Phys. Rev. B 80, 020502 (2009).

    Article  ADS  Google Scholar 

  111. Kleiner, R. Two-dimensional resonant modes in stacked Josephson junctions. Phys. Rev. B 50, 6919–6922 (1994).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank W. K. Kwok, A. E. Koshelev, T. Benseman, B. Gross, H. B. Wang, V. P. Koshelets, R. G. Mints, D. Koelle, T. Kashiwagi, I. Kakeya, T. Yamamoto, R. A. Klemm, M. Tsujimoto, H. Minami and M. Tachiki for many helpful discussions. U.W. acknowledges support from the U.S. Department of Energy (BES), K.K. acknowledges support from the Japanese Society for the Promotion of Science (JSPS) and the Japan Science and Technology Agency (JST), and R.K. acknowledges support from Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Welp.

Ethics declarations

Competing interests

U.W. is a named inventor on three patents (US patents 7,610,071, 7,715,892 and 8,026,487) related to superconducting THz sources. K.K. is a named inventor on two patents (Japanese patents 5229859 and 5229876) related to superconducting THz sources and three patent applications (application numbers 2008-066110, 2008-186590 and 2012-031205).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welp, U., Kadowaki, K. & Kleiner, R. Superconducting emitters of THz radiation. Nature Photon 7, 702–710 (2013). https://doi.org/10.1038/nphoton.2013.216

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.216

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing