Compact spectrometer based on a disordered photonic chip

Article metrics

Abstract

Light scattering in disordered media has been studied extensively due to its prevalence in natural and artificial systems. In photonics most of the research has focused on understanding and mitigating the effects of scattering, which are often detrimental. For certain applications, however, intentionally introducing disorder can actually improve device performance, as in photovoltaics. Here, we demonstrate a spectrometer based on multiple light scattering in a silicon-on-insulator chip featuring a random structure. The probe signal diffuses through the chip generating wavelength-dependent speckle patterns, which are detected and used to recover the input spectrum after calibration. A spectral resolution of 0.75 nm at a wavelength of 1,500 nm in a 25-μm-radius structure is achieved. Such a compact, high-resolution spectrometer is well suited for lab-on-a-chip spectroscopy applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: A chip-based spectrometer based on multiple scattering in a disordered photonic structure.
Figure 2: Spectral calibration and testing of the random spectrometer.
Figure 3: Amorphous and spiral spectrometers with reduced out-of-plane leakage.

References

  1. 1

    Janz, S. et al. Planar waveguide Echelle gratings in silica-on-silicon. IEEE Photon. Technol. Lett. 16, 503–505 (2004).

  2. 2

    He, J. et al. Monolithic integrated wavelength demultiplexer based on a waveguide Rowland circle grating in InGaAsP/InP. J. Lightwave Technol. 16, 631–638 (1998).

  3. 3

    Zirngibl, M., Dragone, C. & Joyner, C. H. Demonstration of a 15×15 arrayed waveguide multiplexer on InP. IEEE Photon. Technol. Lett. 4, 1250–1253 (1992).

  4. 4

    Zirngibl, M., Dragone, C. & Joyner, C. H. Fabrication of 64 × 64 arrayed-waveguide grating multiplexer on silicon. Electron. Lett. 31, 184 (1995).

  5. 5

    Fukazawa, T., Ohno, F. & Baba, T. Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides. Jpn J. Appl. Phys. 43, L673–L675 (2004).

  6. 6

    Cheben, P. et al. A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides. Opt. Express 15, 2299–2306 (2007).

  7. 7

    Mossberg, T. W. Planar holographic optical processing devices. Opt. Lett. 26, 414–416 (2001).

  8. 8

    Babin, S. et al. Digital optical spectrometer-on-chip. Appl. Phys. Lett. 95, 041105 (2009).

  9. 9

    Peroz, C. et al. Multiband wavelength demultiplexer based on digital planar holography for on-chip spectroscopy applications. Opt. Lett. 37, 695–697 (2012).

  10. 10

    Momeni, B., Hosseini, E. S., Askari, M., Soltani, M. & Adibi, A. Integrated photonic crystal spectrometers for sensing applications. Opt. Commun. 282, 3168–3171 (2009).

  11. 11

    Little, B. E. et al. Ultra-compact Si–SiO2 microring resonator. IEEE Photon. Technol. Lett. 10, 549–551 (1998).

  12. 12

    Nitkowski, A., Chen, L. & Lipson, M. Cavity-enhanced on-chip absorption spectroscopy using microring resonators. Opt. Express 16, 11930–11936 (2008).

  13. 13

    Kyotoku, B. B. C., Chen, L. & Lipson, M. Sub-nm resolution cavity enhanced micro-spectrometer. Opt. Express 18, 102–107 (2010).

  14. 14

    Xia, Z. et al. High resolution on-chip spectroscopy based on miniaturized microdonut resonators. Opt. Express 19, 12356–12364 (2011).

  15. 15

    Sharkawy, A, Shi, S. & Prather, D. W. Multichannel wavelength division multiplexing with photonic crystals. Appl. Opt. 40, 2247–2252 (2001).

  16. 16

    Xu, Z. et al. Multimodal multiplex spectroscopy using photonic crystals. Opt. Express 11, 2126–2133 (2003).

  17. 17

    Kohlgraf-Owens, T. W. & Dogariu, A. Transmission matrices of random media: means for spectral polarimetric measurements. Opt. Lett. 35, 2236–2238 (2010).

  18. 18

    Hang, Q., Ung, B., Syed, I., Guo, N. & Skorobogatiy, M. Photonic bandgap fiber bundle spectrometer. Appl. Opt. 49, 4791–4800 (2010).

  19. 19

    Redding, B. & Cao, H. Using a multimode fiber as a high-resolution, low-loss spectrometer. Opt. Lett. 37, 3384–3386 (2012).

  20. 20

    Redding, B., Popoff, S. M. & Cao, H. All-fiber spectrometer based on speckle pattern reconstruction. Opt. Express 21, 6584–6600 (2013).

  21. 21

    Pine, D. J., Weitz, D. A., Chaikin, P. M. & Herbolzheimer, E. Diffusing-wave spectroscopy. Phys. Rev. Lett. 60, 1134–1137 (1988).

  22. 22

    Edagawa, K., Kanoko, S. & Notomi, M. Photonic amorphous diamond structure with a 3D photonic band gap. Phys. Rev. Lett. 100, 013901 (2008).

  23. 23

    Rechtsman, M. et al. Amorphous photonic lattices: band gaps, effective mass, and suppressed transport. Phys. Rev. Lett. 106, 193904 (2011).

  24. 24

    Cao H. & Noh, H. in Amorphous Nanophotonics (eds. Rockstuhl, C. & Scharf, T. ) 227–265 (Springer, 2013).

  25. 25

    Yang, J-K. et al. Photonic-band-gap effects in two-dimensional polycrystalline and amorphous structures. Phys. Rev. A 82, 053838 (2010).

  26. 26

    Dal Negro, L. & Boriskina, S. V. Deterministic aperiodic nanostructures for photonics and plasmonics applications. Laser Photon. Rev. 6, 178–218 (2011).

  27. 27

    Vardeny, Z. V., Nahata, A. & Agrawal, A. Optics of photonic quasicrystals. Nature Photon. 7, 177–187 (2013).

Download references

Acknowledgements

The authors thank A. Dogariu, M. Fink, A. Mosk, A. Yamilov, S. Gigan and S. Popoff for useful discussions. This work was supported by the National Science Foundation (NSF; grants nos. DMR-1205307 and ECCS-1128542). Computational resources were provided under the Extreme Science and Engineering Discovery Environment (XSEDE; grant no. DMR-100030). Facilities use was supported by YINQE and NSF MRSEC DMR-1119826.

Author information

H.C. and B.R. designed the spectrometers. B.R. fabricated the spectrometers and carried out all the testing and spectrum reconstruction. S.F.L. performed the FDFD simulation of spectrometers and R.S. helped B.R. characterize the spectral correlation of speckle patterns in random media. B.R. and H.C. prepared the manuscript with input from S.F.L.

Correspondence to Hui Cao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 736 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Redding, B., Liew, S., Sarma, R. et al. Compact spectrometer based on a disordered photonic chip. Nature Photon 7, 746–751 (2013) doi:10.1038/nphoton.2013.190

Download citation

Further reading