Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Compact spectrometer based on a disordered photonic chip


Light scattering in disordered media has been studied extensively due to its prevalence in natural and artificial systems. In photonics most of the research has focused on understanding and mitigating the effects of scattering, which are often detrimental. For certain applications, however, intentionally introducing disorder can actually improve device performance, as in photovoltaics. Here, we demonstrate a spectrometer based on multiple light scattering in a silicon-on-insulator chip featuring a random structure. The probe signal diffuses through the chip generating wavelength-dependent speckle patterns, which are detected and used to recover the input spectrum after calibration. A spectral resolution of 0.75 nm at a wavelength of 1,500 nm in a 25-μm-radius structure is achieved. Such a compact, high-resolution spectrometer is well suited for lab-on-a-chip spectroscopy applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A chip-based spectrometer based on multiple scattering in a disordered photonic structure.
Figure 2: Spectral calibration and testing of the random spectrometer.
Figure 3: Amorphous and spiral spectrometers with reduced out-of-plane leakage.

Similar content being viewed by others


  1. Janz, S. et al. Planar waveguide Echelle gratings in silica-on-silicon. IEEE Photon. Technol. Lett. 16, 503–505 (2004).

    Article  ADS  Google Scholar 

  2. He, J. et al. Monolithic integrated wavelength demultiplexer based on a waveguide Rowland circle grating in InGaAsP/InP. J. Lightwave Technol. 16, 631–638 (1998).

    Article  ADS  Google Scholar 

  3. Zirngibl, M., Dragone, C. & Joyner, C. H. Demonstration of a 15×15 arrayed waveguide multiplexer on InP. IEEE Photon. Technol. Lett. 4, 1250–1253 (1992).

    Article  ADS  Google Scholar 

  4. Zirngibl, M., Dragone, C. & Joyner, C. H. Fabrication of 64 × 64 arrayed-waveguide grating multiplexer on silicon. Electron. Lett. 31, 184 (1995).

    Article  Google Scholar 

  5. Fukazawa, T., Ohno, F. & Baba, T. Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides. Jpn J. Appl. Phys. 43, L673–L675 (2004).

    Article  ADS  Google Scholar 

  6. Cheben, P. et al. A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides. Opt. Express 15, 2299–2306 (2007).

    Article  ADS  Google Scholar 

  7. Mossberg, T. W. Planar holographic optical processing devices. Opt. Lett. 26, 414–416 (2001).

    Article  ADS  Google Scholar 

  8. Babin, S. et al. Digital optical spectrometer-on-chip. Appl. Phys. Lett. 95, 041105 (2009).

    Article  ADS  Google Scholar 

  9. Peroz, C. et al. Multiband wavelength demultiplexer based on digital planar holography for on-chip spectroscopy applications. Opt. Lett. 37, 695–697 (2012).

    Article  ADS  Google Scholar 

  10. Momeni, B., Hosseini, E. S., Askari, M., Soltani, M. & Adibi, A. Integrated photonic crystal spectrometers for sensing applications. Opt. Commun. 282, 3168–3171 (2009).

    Article  ADS  Google Scholar 

  11. Little, B. E. et al. Ultra-compact Si–SiO2 microring resonator. IEEE Photon. Technol. Lett. 10, 549–551 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  12. Nitkowski, A., Chen, L. & Lipson, M. Cavity-enhanced on-chip absorption spectroscopy using microring resonators. Opt. Express 16, 11930–11936 (2008).

    Article  ADS  Google Scholar 

  13. Kyotoku, B. B. C., Chen, L. & Lipson, M. Sub-nm resolution cavity enhanced micro-spectrometer. Opt. Express 18, 102–107 (2010).

    Article  ADS  Google Scholar 

  14. Xia, Z. et al. High resolution on-chip spectroscopy based on miniaturized microdonut resonators. Opt. Express 19, 12356–12364 (2011).

    Article  ADS  Google Scholar 

  15. Sharkawy, A, Shi, S. & Prather, D. W. Multichannel wavelength division multiplexing with photonic crystals. Appl. Opt. 40, 2247–2252 (2001).

    Article  ADS  Google Scholar 

  16. Xu, Z. et al. Multimodal multiplex spectroscopy using photonic crystals. Opt. Express 11, 2126–2133 (2003).

    Article  ADS  Google Scholar 

  17. Kohlgraf-Owens, T. W. & Dogariu, A. Transmission matrices of random media: means for spectral polarimetric measurements. Opt. Lett. 35, 2236–2238 (2010).

    Article  ADS  Google Scholar 

  18. Hang, Q., Ung, B., Syed, I., Guo, N. & Skorobogatiy, M. Photonic bandgap fiber bundle spectrometer. Appl. Opt. 49, 4791–4800 (2010).

    Article  ADS  Google Scholar 

  19. Redding, B. & Cao, H. Using a multimode fiber as a high-resolution, low-loss spectrometer. Opt. Lett. 37, 3384–3386 (2012).

    Article  ADS  Google Scholar 

  20. Redding, B., Popoff, S. M. & Cao, H. All-fiber spectrometer based on speckle pattern reconstruction. Opt. Express 21, 6584–6600 (2013).

    Article  ADS  Google Scholar 

  21. Pine, D. J., Weitz, D. A., Chaikin, P. M. & Herbolzheimer, E. Diffusing-wave spectroscopy. Phys. Rev. Lett. 60, 1134–1137 (1988).

    Article  ADS  Google Scholar 

  22. Edagawa, K., Kanoko, S. & Notomi, M. Photonic amorphous diamond structure with a 3D photonic band gap. Phys. Rev. Lett. 100, 013901 (2008).

    Article  ADS  Google Scholar 

  23. Rechtsman, M. et al. Amorphous photonic lattices: band gaps, effective mass, and suppressed transport. Phys. Rev. Lett. 106, 193904 (2011).

    Article  ADS  Google Scholar 

  24. Cao H. & Noh, H. in Amorphous Nanophotonics (eds. Rockstuhl, C. & Scharf, T. ) 227–265 (Springer, 2013).

  25. Yang, J-K. et al. Photonic-band-gap effects in two-dimensional polycrystalline and amorphous structures. Phys. Rev. A 82, 053838 (2010).

    Article  ADS  Google Scholar 

  26. Dal Negro, L. & Boriskina, S. V. Deterministic aperiodic nanostructures for photonics and plasmonics applications. Laser Photon. Rev. 6, 178–218 (2011).

    Article  ADS  Google Scholar 

  27. Vardeny, Z. V., Nahata, A. & Agrawal, A. Optics of photonic quasicrystals. Nature Photon. 7, 177–187 (2013).

    Article  ADS  Google Scholar 

Download references


The authors thank A. Dogariu, M. Fink, A. Mosk, A. Yamilov, S. Gigan and S. Popoff for useful discussions. This work was supported by the National Science Foundation (NSF; grants nos. DMR-1205307 and ECCS-1128542). Computational resources were provided under the Extreme Science and Engineering Discovery Environment (XSEDE; grant no. DMR-100030). Facilities use was supported by YINQE and NSF MRSEC DMR-1119826.

Author information

Authors and Affiliations



H.C. and B.R. designed the spectrometers. B.R. fabricated the spectrometers and carried out all the testing and spectrum reconstruction. S.F.L. performed the FDFD simulation of spectrometers and R.S. helped B.R. characterize the spectral correlation of speckle patterns in random media. B.R. and H.C. prepared the manuscript with input from S.F.L.

Corresponding author

Correspondence to Hui Cao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 736 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redding, B., Liew, S., Sarma, R. et al. Compact spectrometer based on a disordered photonic chip. Nature Photon 7, 746–751 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing