New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics

Article metrics

Abstract

Nonlinear photonic chips can generate and process signals all-optically with far superior performance to that possible electronically — particularly with respect to speed. Although silicon-on-insulator has been the leading platform for nonlinear optics, its high two-photon absorption at telecommunication wavelengths poses a fundamental limitation. We review recent progress in non-silicon CMOS-compatible platforms for nonlinear optics, with a focus on Si3N4 and Hydex®. These material systems have opened up many new capabilities such as on-chip optical frequency comb generation and ultrafast optical pulse generation and measurement. We highlight their potential future impact as well as the challenges to achieving practical solutions for many key applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Silicon nitride nanowires and Hydex waveguides.
Figure 2: Integrated optical-parametric-oscillator multiple-wavelength sources in Hydex and SiN ring resonators.
Figure 3: Advanced frequency combs in SiN ring resonators.
Figure 4: Coherence and frequency comb formation dynamics.
Figure 5: Microresonator-based mode-locked fibre loop laser.
Figure 6: Phase and amplitude measurement of ultrafast optical pulses using spectral phase interferometry for direct electric-field reconstruction (SPIDER).

References

  1. 1

    Eggleton, B. J., Moss, D. J. & Radic, S. in Optical Fiber Telecommunications V: Components and Sub-systems (eds Kaminow, I. P., Li, T. & Willner, A. E.) Ch. 20, 759–828 (Academic, 2008).

  2. 2

    Leuthold, J., Koos, C. & Freude, W. Nonlinear silicon photonics. Nature Photon. 4, 535–544 (2010).

  3. 3

    Ji, H. et al. 1.28-Tb/s Demultiplexing of an OTDM DPSK data signal using a silicon waveguide. IEEE Photon. Tech. Lett. 22, 1762–1764 (2010).

  4. 4

    Galili, M. et al. Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing Opt. Express 17, 2182–2187 (2009).

  5. 5

    Foster, M. A. et al. Broad-band optical parametric gain on a silicon chip. Nature 441, 960–963 (2006).

  6. 6

    Rong, H. et al. A cascaded silicon Raman laser. Nature Photon. 2, 170–174 (2008).

  7. 7

    Mathlouthi, W., Rong, H. & Paniccia, M. Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides. Opt. Express 16, 16735–16745 (2008).

  8. 8

    Li, F. et al. All-optical XOR logic gate for 40Gb/s DPSK signals via FWM in a silicon nanowire. Opt. Express 19, 20364–20371 (2011).

  9. 9

    Salem, R. et al. Signal regeneration using low-power four-wave mixing on a silicon chip. Nature Photon. 2, 35–38 (2008).

  10. 10

    Ta'eed, V. G. et al. Integrated all-optical pulse regeneration in chalcogenide waveguides. Opt. Lett. 30, 2900–2902 (2005).

  11. 11

    Pelusi, M. et al. Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth. Nature Photon. 3, 139–143 (2009).

  12. 12

    Corcoran, B. et al. Silicon nanowire based radio-frequency spectrum analyser. Opt. Express 18, 20190–20200 (2010).

  13. 13

    Foster, M. A. et al. Silicon-chip-based ultrafast optical oscilloscope. Nature 456, 81–84 (2008).

  14. 14

    Pasquazi, A. et al. Sub-picosecond phase-sensitive optical pulse characterization on a chip. Nature Photon. 5, 618–623 (2011).

  15. 15

    Peccianti, M. et al. Demonstration of a stable ultrafast laser based on a nonlinear microcavity. Nat. Commun. 3, 765 (2012).

  16. 16

    Fridman, M., Farsi, A., Okawachi, Y. & Gaeta, A. L. Demonstration of temporal cloaking. Nature 481, 62–65 (2012).

  17. 17

    Slavík, R. et al. All-optical phase and amplitude regenerator for next-generation telecommunications systems. Nature Photon. 4, 690–695 (2010).

  18. 18

    Winzer, P. Beyond 100G Ethernet. IEEE Commun. Mag. 48, 26–30 (2010).

  19. 19

    Essiambre, R., Kramer, G., Winzer, P. J., Foschini, G. J. & Goebel, B. Capacity limits of optical fiber networks. J. of Lightwave Technol. 28, 662–701 (2010).

  20. 20

    Won, R. Integrating silicon photonics. Nature Photon. 4, 498–499 (2010).

  21. 21

    Baehr-Jones, T. et al. Myths and rumours of silicon photonics. Nature Photon. 6, 206–208 (2012).

  22. 22

    Hochberg, M. & Baehr-Jones, T. Towards fabless silicon photonics. Nature Photon. 4, 492–494 (2010).

  23. 23

    Jalali, B. Nonlinear optics in the mid-infrared. Nature Photon. 4, 506–508 (2010).

  24. 24

    Xia, F., Sekaric, L. & Vlasov, Y. Ultracompact optical buffers on a silicon chip. Nature Photon. 1, 65–71 (2007).

  25. 25

    Alduino, A. & Paniccia, M. Interconnects: Wiring electronics with light. Nature Photon. 1, 153–155 (2007).

  26. 26

    Selvaraja, S. K. et al. Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography. J. of Lightwave Technol. 27, 4076–4083 (2009).

  27. 27

    Dumon, P., Bogaerts, W., Baets, R., Fedeli, J.-M. & Fulbert, L. Towards foundry approach for silicon photonics: Silicon photonics platform ePIXfab. IEEE Electron. Lett. 45, 581–582 (2009).

  28. 28

    Bogaerts, W. et al. Silicon microring resonators. Las. Photon. Rev. 6, 47–73 (2012).

  29. 29

    Vlasov, Y., Green, W. M. J. & Xia, F. High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. Nature Photon. 2, 242–246 (2008).

  30. 30

    Rong, H. et al. Low-threshold continuous-wave Raman silicon laser. Nature Photon. 1, 232–237 (2007).

  31. 31

    Rong, H. et al. A continuous-wave Raman silicon laser. Nature 433, 725–728 (2005).

  32. 32

    Rong, H. et al. An all-silicon Raman laser. Nature 433, 292–294 (2005).

  33. 33

    Jalali, B., Solli, D. R. & Gupta, S. Silicon's time lens. Nature Photon. 3, 8–10 (2009).

  34. 34

    Krauss, T. F., De La Rue, R. M. & Brand, S. Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths. Nature 383, 699–702 (1996).

  35. 35

    Vlasov, Y. A., Bo, X.-Z., Sturm, J. C. & Norris, D. J. On-chip natural assembly of silicon photonic bandgap crystals. Nature 414, 289–293 (2001).

  36. 36

    Vlasov, Y. A., O'Boyle, M., Hamann, H. F. & McNab S. J. Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005).

  37. 37

    Kuyken, B. et al. 50 dB parametric on-chip gain in silicon photonic wires. Opt. Lett. 36, 4401–4403 (2011).

  38. 38

    Liu, X., Osgood, R. M. Jr, Vlasov, Y. A. & Green, W. M. J. Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides. Nature Photon. 4, 557–560 (2010).

  39. 39

    Zlatanovic, S. et al. Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source. Nature Photon. 4, 561–564 (2010).

  40. 40

    Grom, G. F. et al. Ordering and self-organization in nanocrystalline silicon. Nature 407, 358–361 (2000).

  41. 41

    Hirschman, K. D., Tsybeskov, L., Duttagupta, S. P. & Fauchet, P. M. Silicon-based visible light-emitting devices integrated into microelectronic circuits. Nature 384, 338–341 (1996).

  42. 42

    Clemmen, S. et al. Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators. Opt. Express 18, 14107 (2010).

  43. 43

    Liang, T. K. & Tsang, H. K. Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides. IEEE J. Selected Topics in Quant. Electron. 10, 1149–1153 (2004).

  44. 44

    Liu, A., Rong, H., Paniccia, M., Cohen, O. & Hak, D. Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering. Opt. Express 12, 4261–4268 (2004).

  45. 45

    Gholami, F. et al. Third-order nonlinearity in silicon beyond 2350 nm. Appl. Phys. Lett. 99, 081102 (2011).

  46. 46

    Lin, Q. et al. Dispersion of silicon nonlinearities in the near infrared region. Appl. Phys. Lett. 91, 021111 (2007).

  47. 47

    Dinu, M., Quochi, F. & Garcia, H. Third-order nonlinearities in silicon at telecom wavelengths. Appl. Phys. Lett. 82, 2954–2956 (2003).

  48. 48

    Zlatanovic, S. et al. Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source. Nature Photon. 4, 561–564 (2010).

  49. 49

    Liu, X., Osgood, R. M. Jr, Vlasov, Y. A. & Green, W. M. J. Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides. Nature Photon. 4, 557–560 (2010).

  50. 50

    Eggleton, B. J., Luther-Davies, B. & Richardson, K. Chalcogenide photonics. Nature Photon. 5, 141–148 (2011).

  51. 51

    Aitchison, J. S., Hutchings, D. C., Kang, J. U., Stegeman, G. I. & Villeneuve, A. The nonlinear optical properties of AlGaAs at the half band gap. IEEE J. of Quant. Electron. 33, 341–348 (1997).

  52. 52

    Dolgaleva, K., Ng, W. C., Qian, L. & Aitchison, J. S. Compact highly-nonlinear AlGaAs waveguides for efficient wavelength conversion. Optics Exp. 19, 12440–12455 (2011).

  53. 53

    Baehr-Jones, T. W. & Hochberg, M. J. Polymer silicon hybrid systems: A platform for practical nonlinear optics. J. Phys. Chem. C 112, 8085–8090 (2008).

  54. 54

    Leuthold, J. et al. Silicon organic hybrid technology — A platform for practical nonlinear optics. Proc. IEEE 97, 1304–1316 (2009).

  55. 55

    Ikeda, K., Saperstein, R. E., Alic, N. & Fainman, Y. Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides. Opt. Express 16, 12987–12994 (2008).

  56. 56

    Tan, D. T. H., Ikeda, K., Sun, P. C. & Fainman, Y. Group velocity dispersion and self phase modulation in silicon nitride waveguides. Appl. Phys. Lett. 96, 061101 (2010).

  57. 57

    Levy, J. S. et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nature Photon. 4, 37–40 (2010).

  58. 58

    Razzari, L. et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nature Photon. 4, 41–45 (2010).

  59. 59

    Ferrera, M. et al. Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures. Nature Photon. 2, 737–740 (2008).

  60. 60

    Henry, C. H., Kazarinov, R. F., Lee, H. J., Orlowsky, K. J. & Katz, L. E. Low loss Si3N4-SiO2 optical waveguides on Si. Appl. Opt. 26, 2621–2624 (1987).

  61. 61

    Daldosso, N. et al. Comparison among various Si3N4 waveguide geometries grown within a CMOS fabrication pilot line. IEEE J. Lightwave Technol. 22, 1734–1740 (2004).

  62. 62

    Little, B. E. et al. Very high-order microring resonator filters for WDM applications. IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).

  63. 63

    Duchesne, D. et al. Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides. Opt. Express 17, 1865–1870 (2009).

  64. 64

    Levy, J. S. et al. High-performance silicon-nitride-based multiple-wavelength source. IEEE Photon. Technol. Lett. 24, 1375–1377 (2012).

  65. 65

    Herr, T. et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nature Photon. 6, 480–487 (2012).

  66. 66

    Okawachi, Y. et al. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett. 36, 3398–3400 (2011).

  67. 67

    Johnson, A. R. et al. Chip-based frequency combs with sub-100 GHz repetition rates. Opt. Lett. 37, 875–877 (2012).

  68. 68

    Ferdous, F. et al. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nature Photon. 5, 770–776 (2011).

  69. 69

    Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

  70. 70

    Saha, K. et al. Modelocking and femtosecond pulse generation in chip-based frequency combs. Opt. Express 21, 1335–1343 (2012).

  71. 71

    Peccianti, M. et al. Dual frequency comb mode-locked laser based on an integrated nonlinear microring resonator. Opt. Express 20, 27355–27363 (2012).

  72. 72

    Levy, J. S., Foster, M. A., Gaeta, A. L. & Lipson, M. Harmonic generation in silicon nitride ring resonators. Opt. Express 19, 11415–11421 (2011).

  73. 73

    Monro, T. M. et al. Progress in microstructured optical fibers. Annu. Rev. Mater. Res. 36, 467–495 (2006).

  74. 74

    Pasquazi, A. et al. Efficient wavelength conversion and net parametric gain via four wave mixing in a high index doped silica waveguide. Opt. Express 18, 7634–7641 (2010).

  75. 75

    Lamont, M. R. et al. Net-gain from a parametric amplifier on a chalcogenide optical chip. Opt. Express 16, 20374–20381 (2008).

  76. 76

    Ferrera, M. et al. Low power four-wave mixing in an integrated, microring resonator with Q = 1.2 million. Opt. Express 17, 14098–14103 (2009).

  77. 77

    Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

  78. 78

    Grudinin, I. S., Yu, N. & Maleki, L. Generation of optical frequency combs with a CaF2 resonator. Opt. Lett. 34, 878–880 (2009).

  79. 79

    Turner, A. C., Foster, M. A., Gaeta, A. L. & Lipson, M. Ultra-low power parametric frequency conversion in a silicon microring resonator. Opt. Express 16, 4881–4887 (2008).

  80. 80

    Fukuda, H. et al. Four-wave mixing in silicon wire waveguides. Opt. Express 13, 4629–4637 (2005).

  81. 81

    Pasquazi, A. et al. All-optical wavelength conversion in an integrated ring resonator. Opt. Express 18, 3858–3863 (2010).

  82. 82

    Morichetti, F. et al. Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion. Nat. Commun. 2, 296 (2011).

  83. 83

    Cundiff, S. T. & Weiner, A. M. Optical arbitrary waveform generation. Nature Photon. 4, 760–766 (2010).

  84. 84

    Jiang, Z., Huang, C. B., Leaird, D. E. & Weiner, A. M. Optical arbitrary waveform processing of more than 100 spectral comb lines. Nature Photon. 1, 463–467 (2007).

  85. 85

    Khan, M. H. et al. Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nature Photon. 4, 117–122 (2010).

  86. 86

    Udem, Th., R . Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

  87. 87

    Jones, D. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).

  88. 88

    Ranka, J. K., Windeler, R. S. & Stentz, A. J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25, 25–27 (2000).

  89. 89

    Lamont, M. R., Luther-Davies, B., Choi, D.-Y., Madden, S. & Eggleton B. J. Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10/W/m) As2S3 chalcogenide planar waveguide. Opt. Express 16, 14938 (2008).

  90. 90

    Phillips, C. R. et al. Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system. Opt. Lett. 36, 3912–3914 (2011).

  91. 91

    Koonath, P., Solli, D. R. & Jalali, B. Limiting nature of continuum generation in silicon. Appl. Phys. Lett. 93, 091114 (2008).

  92. 92

    Duchesne, D. et al. Supercontinuum generation in a high index doped silica glass spiral waveguide. Opt. Express 18, 923–930 (2010).

  93. 93

    Halir, R. et al. Ultrabroadband supercontinuum generation in a CMOS-compatible platform. Opt. Lett. 37, 1685–1687 (2012).

  94. 94

    Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006).

  95. 95

    Hsieh, I.-W. et al. Supercontinuum generation in silicon photonic wires. Opt. Express 15, 15242–15249 (2007).

  96. 96

    Bartels, A. et al. Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references. Opt. Lett. 30, 667–669 (2005).

  97. 97

    Herrmann, J. et al. Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers. Phys. Rev. Lett. 88, 173901 (2002).

  98. 98

    Herr, T. et al. Temporal solitons in optical microresonators. Preprint at http://arxiv.org/abs/1211.0733v3 (2013).

  99. 99

    Leo, F. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nature Photon. 4, 471–476 (2010).

  100. 100

    Quiroga-Teixeiro, M., Balslev Clausen, C., Sørensen, M. P., Christiansen, P. L. & Andrekson, P. A. Passive mode locking by dissipative four-wave mixing. J. Opt. Soc. Am. B 15, 1315–1321 (1998).

  101. 101

    Sylvestre, T., Coen, S., Emplit, P. & Haelterman, M. Self-induced modulational instability laser revisited: Normal dispersion and dark-pulse train generation. Opt. Lett. 27, 482–484 (2002).

  102. 102

    Schröder, J., Vo, T. D. & Eggleton, B. J. Repetition-rate-selective, wavelength-tunable mode-locked laser at up to 640 GHz. Opt. Lett. 34, 3902–3904 (2009).

  103. 103

    Schawlow, A. L. & Townes, C. H. Infrared and optical masers. Phys. Rev. 112, 1940–1949 (1958).

  104. 104

    Yoshida, M., Ono, A. & Nakazawa, M. 10 GHz regeneratively mode-locked semiconductor optical amplifier fibre ring laser and its linewidth characteristics. Opt. Lett. 32, 3513–3515 (2007).

  105. 105

    Foster, M. et al. Silicon-chip-based ultrafast optical oscilloscope. Nature 456, 81–84 (2008).

  106. 106

    Pasquazi, A. et al. Time-lens measurement of subpicosecond optical pulses in CMOS compatible high-index glass waveguides. IEEE J. Selected Topics in Quant. Electron. 18, 629–636 (2012).

  107. 107

    Trebino, R. Frequency Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2002).

  108. 108

    Iaconis, C. & Walmsley, I. A. Spectral phase interferometry for direct electric field reconstruction of ultrashort optical pulses. Opt. Lett. 23, 792–794 (1998).

  109. 109

    Iaconis, C. & Walmsley, I. A. Self-referencing spectral interferometry for measuring ultrashort optical pulses. IEEE J. Quant. Electron. 35, 501–509 (1999).

  110. 110

    Gallmann, L. et al. Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct electric-field reconstruction. Opt. Lett. 24, 1314–1316 (1999).

  111. 111

    Dorrer, C. et al. Single-shot real-time characterization of chirped-pulse amplification systems by spectral phase interferometry for direct electric-field reconstruction. Opt. Lett. 24, 1644–1646 (1999).

  112. 112

    Bromage, J., Dorrer, C., Begishev, I. A., Usechak, N. G. & Zuegel, J. D. Highly sensitive, single-shot characterization for pulse widths from 0.4 to 85 ps using electro-optic shearing interferometry. Opt. Lett. 31, 3523–3525 (2006).

  113. 113

    Dorrer, C. & Bromage, J. High-sensitivity optical pulse characterization using Sagnac electro-optic spectral shearing interferometry. Opt. Lett. 35, 1353–1355 (2010).

  114. 114

    Walmsley, I. A. & Dorrer, C. Characterization of ultrashort electromagnetic pulses. Adv. Opt. Photon. 1, 308–437 (2009).

  115. 115

    Anderson, M. E., Monmayrant, A., Gorza, S. P., Wasylczyk, P. & Walmsley, I. A. SPIDER: a decade of measuring ultrashort pulses. Laser Phys. Lett. 5, 259–266 (2008).

  116. 116

    Pasquazi, A., Peccianti, M., Azaña, J., Moss, D. J. & Morandotti, R. FLEA: Fresnel-limited extraction algorithm for direct field reconstruction (SPIDER). Opt. Express 21, 5743–5758 (2013).

  117. 117

    Moss, D. J., van Driel, H. M. & Sipe, J. E. Third harmonic generation as a structural diagnostic of ion-implanted amorphous and crystalline silicon. Appl. Phys. Lett. 48, 1150 (1986).

  118. 118

    Orobtchouk, R. et al. in Proc. SPIE 6183, Integrated Optics, Silicon Photonics, and Photonic Integrated Circuits paper 618304 (SPIE, 2006).

  119. 119

    Fedeli, J. M. et al. in Proc. 3rd IEEE International Conf. on Group IV Photonics 200–202 (IEEE, 2006).

  120. 120

    Ikeda, K., Shen, Y. & Fainman, Y. Enhanced optical nonlinearity in amorphous silicon and its application to waveguide devices. Opt. Express 15, 17761–17771 (2007).

  121. 121

    Shoji, Y. et al. Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide. Opt. Express 18, 5668–5673 (2010).

  122. 122

    Narayanan, K. & Preble, S. F. Optical nonlinearities in hydrogenated amorphous silicon waveguides. Opt. Express 18, 8998–9905 (2010).

  123. 123

    Suda, S. et al. Pattern-effect-free all-optical wavelength conversion using a hydrogenated amorphous silicon waveguide with ultra-fast carrier decay. Opt. Lett. 37, 1382–1384 (2012).

  124. 124

    Wang, K.-Y. & Foster, A. C. Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides. Opt. Lett. 37, 1331–1333 (2012).

  125. 125

    Kuyken, B. et al. On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides. Opt. Lett. 36, 552–554 (2011).

  126. 126

    Kuyken, B. et al. Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides. Opt. Express 19, B146–B153 (2011).

  127. 127

    Grillet, C. et al. Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability. Opt. Express 20, 22609 (2012).

  128. 128

    Corcoran, B. et al. Optical signal processing on a silicon chip at 640Gb/s using slow-light. Opt. Express 18, 7770–7781 (2010).

  129. 129

    Monat, C. et al. Slow light enhanced nonlinear optics in silicon photonic crystal waveguides. IEEE J. of Selected Topics in Quant. Elect. 16, 344–356 (2010).

Download references

Acknowledgements

The authors acknowledge financial support from the Australian Research Council Discovery Project and the Centres of Excellence programme, the Canadian Natural Sciences and Engineering Research Council (NSERC), the Defense Advanced Research Projects Agency (DARPA) and the National Science Foundation. We would also like to thank A. Pasquazi and M. Peccianti for proofreading the manuscript.

Author information

Correspondence to David J. Moss.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Moss, D., Morandotti, R., Gaeta, A. et al. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nature Photon 7, 597–607 (2013) doi:10.1038/nphoton.2013.183

Download citation

Further reading