Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Brightening of excitons in carbon nanotubes on dimensionality modification

Abstract

Despite the attractive one-dimensional characteristics of carbon nanotubes1, their typically low luminescence quantum yield, restricted because of their one-dimensional nature2,3,4,5,6,7,8,9, has limited the performance of nanotube-based light-emitting devices10,11. Here, we report the striking brightening of excitons (bound electron–hole pairs)12,13 in carbon nanotubes through an artificial modification of their effective dimensionality from one dimension to zero dimensions. Exciton dynamics in carbon nanotubes with luminescent, local zero-dimension-like states generated by oxygen doping14 were studied as model systems. We found that the luminescence quantum yield of the excitons confined in the zero-dimension-like states can be more than at least one order larger (18%) than that of the intrinsic one-dimensional excitons (typically 1%), not only because of the reduced non-radiative decay pathways but also due to an enhanced radiative recombination probability beyond that of intrinsic one-dimensional excitons. Our findings are extendable to the realization of future nanoscale photonic devices including a near-infrared single-photon emitter operable at room temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of a carbon nanotube with a luminescent local state.
Figure 2: Optical spectra of carbon nanotubes with luminescent local states.
Figure 3: Relationship of luminescence intensities from mobile and local excitons.
Figure 4: Time-resolved and temperature-dependent luminescence studies.

Similar content being viewed by others

References

  1. Saito, R., Dresselhaus, G. & Dresselhaus, M. S. Physical Properties of Carbon Nanotubes (Imperial College Press, 1998).

    Book  Google Scholar 

  2. Perebeinos, V., Tersoff, J. & Avouris, P. Radiative lifetime of excitons in carbon nanotubes. Nano Lett. 5, 2495–2499 (2005).

    Article  ADS  Google Scholar 

  3. Spataru, C. D., Ismail-Beigi, S., Capaz, R. B. & Louie, S. G. Theory and ab initio calculation of radiative lifetime of excitons in semiconducting carbon nanotubes. Phys. Rev. Lett. 95, 247402 (2005).

    Article  ADS  Google Scholar 

  4. Cognet, L. et al. Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions. Science 316, 1465–1468 (2007).

    Article  ADS  Google Scholar 

  5. Rajan, A., Strano, M. S., Heller, D. A., Hertel, T. & Schulten, K. Length-dependent optical effects in single walled carbon nanotubes. J. Phys. Chem. B 112, 6211–6213 (2008).

    Article  Google Scholar 

  6. Miyauchi, Y., Matsuda, K., Yamamoto, Y., Nakashima, N. & Kanemitsu, Y. Length-dependent photoluminescence lifetimes in single-walled carbon nanotubes. J. Phys. Chem. C 114, 12905–12908 (2010).

    Article  Google Scholar 

  7. Miyauchi, Y., Hirori, H., Matsuda, K. & Kanemitsu, Y. Radiative lifetimes and coherence lengths of one-dimensional excitons in single-walled carbon nanotubes. Phys. Rev. B 80, 081410(R) (2009).

    Article  ADS  Google Scholar 

  8. Hertel, T., Himmelein, S., Ackermann, T., Stich, D. & Crochet, J. Diffusion limited photoluminescence quantum yields in 1-D semiconductors: single-wall carbon nanotubes. ACS Nano 4, 7161–7168 (2010).

    Article  Google Scholar 

  9. Harrah, D. M. & Swan, A. K. The role of length and defects on optical quantum efficiency and exciton decay dynamics in single-walled carbon nanotubes. ACS Nano 5, 647–655 (2011).

    Article  Google Scholar 

  10. Mueller, T. et al. Efficient narrow-band light emission from a single carbon nanotube p–n diode. Nature Nanotech. 5, 27–31 (2010).

    Article  ADS  Google Scholar 

  11. Hertel, T. Carbon nanotubes: a brighter future. Nature Photon. 4, 77–78 (2010).

    Article  ADS  Google Scholar 

  12. Ando, T. Excitons in carbon nanotubes. J. Phys. Soc. Jpn 66, 1066–1073 (1997).

    Article  ADS  Google Scholar 

  13. Wang, F., Dukovic, G., Brus, L. E. & Heinz, T. F. The optical resonances in carbon nanotubes arise from excitons. Science 308, 838–841 (2005).

    Article  ADS  Google Scholar 

  14. Ghosh, S., Bachilo, S. M., Simonette, R. A., Beckingham, K. M. & Weisman, R. B. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes. Science 330, 1656–1659 (2010).

    Article  ADS  Google Scholar 

  15. O'Connell, M. J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).

    Article  ADS  Google Scholar 

  16. Lebedkin, S. et al. FTIR-luminescence mapping of dispersed single-walled carbon nanotubes. New J. Phys. 5, 140 (2003).

    Article  ADS  Google Scholar 

  17. Crochet, J., Clemens, M. & Hertel, T. Quantum yield heterogeneities of aqueous single-wall carbon nanotube suspensions. J. Am. Chem. Soc. 129, 8058–8059 (2007).

    Article  Google Scholar 

  18. Ju, S.-Y., Kopcha, W. P. & Papadimitrakopoulos, F. Brightly fluorescent single-walled carbon nanotubes via an oxygen-excluding surfactant organization. Science 323, 1319–1323 (2009).

    Article  ADS  Google Scholar 

  19. Lee, A. J. et al. Bright fluorescence from individual single-walled carbon nanotubes. Nano Lett. 11, 1636–1640 (2011).

    Article  ADS  Google Scholar 

  20. Crochet, J. J., Duque, J. G., Werner, J. H. & Doorn, S. K. Photoluminescence imaging of electronic-impurity-induced exciton quenching in single-walled carbon nanotubes. Nature Nanotech. 7, 126–132 (2012).

    Article  ADS  Google Scholar 

  21. Högele, A., Galland, C., Winger, M. & Imamoğlu, A. Photon antibunching in the photoluminescence spectra of a single carbon nanotube. Phys. Rev. Lett. 100, 217401 (2008).

    Article  ADS  Google Scholar 

  22. Hirori, H., Matsuda, K., Miyauchi, Y., Maruyama, S. & Kanemitsu, Y. Exciton localization of single-walled carbon nanotubes revealed by femtosecond excitation correlation spectroscopy. Phys. Rev. Lett. 97, 257401 (2006).

    Article  ADS  Google Scholar 

  23. Kilina, S., Ramirez, J. & Tretiak, S. Brightening of the lowest exciton in carbon nanotubes via chemical functionalization. Nano Lett. 12, 2306–2312 (2012).

    Article  ADS  Google Scholar 

  24. Nagatsu, K., Chiashi, S., Konabe, S. & Homma, Y. Brightening of triplet dark excitons by atomic hydrogen adsorption in single-walled carbon nanotubes observed by photoluminescence spectroscopy. Phys. Rev. Lett. 105, 157403 (2010).

    Article  ADS  Google Scholar 

  25. Iakoubovskii, K. et al. Midgap luminescence centers in single-wall carbon nanotubes created by ultraviolet illumination. Appl. Phys. Lett. 89, 173108 (2006).

    Article  ADS  Google Scholar 

  26. Lefebvre, J., Austing, D. G., Bond, J. & Finnie, P. Photoluminescence imaging of suspended single-walled carbon nanotubes. Nano Lett. 6, 1603–1608 (2006).

    Article  ADS  Google Scholar 

  27. Tomio, Y. & Suzuura, H. Aharonov–Bohm effect on impurity-bound excitons in semiconducting carbon nanotubes. J. Phys. Conf. Ser. 302, 012005 (2011).

    Article  Google Scholar 

  28. Takagahara, T. & Hanamura, E. Giant-oscillator-strength effect on excitonic optical nonlinearities due to localization. Phys. Rev. Lett. 56, 2533–2536 (1986).

    Article  ADS  Google Scholar 

  29. Lüer, L. et al. Size and mobility of excitons in (6, 5) carbon nanotubes. Nature Phys. 5, 54–58 (2009).

    Article  ADS  Google Scholar 

  30. Mizuochi, N. et al. Electrically driven single-photon source at room temperature in diamond. Nature Photon. 6, 299–303 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by Precursory Research for Embryonic Science and Technology (PRESTO) programme (no. 3538 from the Japan Science and Technology Agency (JST)), by Grants-in-Aid for Scientific Research (nos 24681031, 22740195 and 23340085 from the Japan Society for the Promotion of Science (JSPS); no. 22016007 from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT)), and by Asahi Glass Foundation. The authors thank Y. Kawazoe, M. Uesugi, N. Tokitoh, T. Murakami, T. Umeyama and H. Imahori for experimental equipment and T. F. Heinz for discussions.

Author information

Authors and Affiliations

Authors

Contributions

Y.M. developed the concept, designed the experiment and prepared the manuscript. Y.M. and M.I. performed the optical measurements. T.K. and M.O. contributed to the time-resolved photoluminescence measurements. M.I. prepared the samples. Y.M., M.I., S.M. and K.M. contributed to interpreting the results and writing the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Yuhei Miyauchi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2328 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyauchi, Y., Iwamura, M., Mouri, S. et al. Brightening of excitons in carbon nanotubes on dimensionality modification. Nature Photon 7, 715–719 (2013). https://doi.org/10.1038/nphoton.2013.179

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.179

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing