Brightening of excitons in carbon nanotubes on dimensionality modification

Article metrics


Despite the attractive one-dimensional characteristics of carbon nanotubes1, their typically low luminescence quantum yield, restricted because of their one-dimensional nature2,3,4,5,6,7,8,9, has limited the performance of nanotube-based light-emitting devices10,11. Here, we report the striking brightening of excitons (bound electron–hole pairs)12,13 in carbon nanotubes through an artificial modification of their effective dimensionality from one dimension to zero dimensions. Exciton dynamics in carbon nanotubes with luminescent, local zero-dimension-like states generated by oxygen doping14 were studied as model systems. We found that the luminescence quantum yield of the excitons confined in the zero-dimension-like states can be more than at least one order larger (18%) than that of the intrinsic one-dimensional excitons (typically 1%), not only because of the reduced non-radiative decay pathways but also due to an enhanced radiative recombination probability beyond that of intrinsic one-dimensional excitons. Our findings are extendable to the realization of future nanoscale photonic devices including a near-infrared single-photon emitter operable at room temperature.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic of a carbon nanotube with a luminescent local state.
Figure 2: Optical spectra of carbon nanotubes with luminescent local states.
Figure 3: Relationship of luminescence intensities from mobile and local excitons.
Figure 4: Time-resolved and temperature-dependent luminescence studies.


  1. 1

    Saito, R., Dresselhaus, G. & Dresselhaus, M. S. Physical Properties of Carbon Nanotubes (Imperial College Press, 1998).

  2. 2

    Perebeinos, V., Tersoff, J. & Avouris, P. Radiative lifetime of excitons in carbon nanotubes. Nano Lett. 5, 2495–2499 (2005).

  3. 3

    Spataru, C. D., Ismail-Beigi, S., Capaz, R. B. & Louie, S. G. Theory and ab initio calculation of radiative lifetime of excitons in semiconducting carbon nanotubes. Phys. Rev. Lett. 95, 247402 (2005).

  4. 4

    Cognet, L. et al. Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions. Science 316, 1465–1468 (2007).

  5. 5

    Rajan, A., Strano, M. S., Heller, D. A., Hertel, T. & Schulten, K. Length-dependent optical effects in single walled carbon nanotubes. J. Phys. Chem. B 112, 6211–6213 (2008).

  6. 6

    Miyauchi, Y., Matsuda, K., Yamamoto, Y., Nakashima, N. & Kanemitsu, Y. Length-dependent photoluminescence lifetimes in single-walled carbon nanotubes. J. Phys. Chem. C 114, 12905–12908 (2010).

  7. 7

    Miyauchi, Y., Hirori, H., Matsuda, K. & Kanemitsu, Y. Radiative lifetimes and coherence lengths of one-dimensional excitons in single-walled carbon nanotubes. Phys. Rev. B 80, 081410(R) (2009).

  8. 8

    Hertel, T., Himmelein, S., Ackermann, T., Stich, D. & Crochet, J. Diffusion limited photoluminescence quantum yields in 1-D semiconductors: single-wall carbon nanotubes. ACS Nano 4, 7161–7168 (2010).

  9. 9

    Harrah, D. M. & Swan, A. K. The role of length and defects on optical quantum efficiency and exciton decay dynamics in single-walled carbon nanotubes. ACS Nano 5, 647–655 (2011).

  10. 10

    Mueller, T. et al. Efficient narrow-band light emission from a single carbon nanotube p–n diode. Nature Nanotech. 5, 27–31 (2010).

  11. 11

    Hertel, T. Carbon nanotubes: a brighter future. Nature Photon. 4, 77–78 (2010).

  12. 12

    Ando, T. Excitons in carbon nanotubes. J. Phys. Soc. Jpn 66, 1066–1073 (1997).

  13. 13

    Wang, F., Dukovic, G., Brus, L. E. & Heinz, T. F. The optical resonances in carbon nanotubes arise from excitons. Science 308, 838–841 (2005).

  14. 14

    Ghosh, S., Bachilo, S. M., Simonette, R. A., Beckingham, K. M. & Weisman, R. B. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes. Science 330, 1656–1659 (2010).

  15. 15

    O'Connell, M. J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).

  16. 16

    Lebedkin, S. et al. FTIR-luminescence mapping of dispersed single-walled carbon nanotubes. New J. Phys. 5, 140 (2003).

  17. 17

    Crochet, J., Clemens, M. & Hertel, T. Quantum yield heterogeneities of aqueous single-wall carbon nanotube suspensions. J. Am. Chem. Soc. 129, 8058–8059 (2007).

  18. 18

    Ju, S.-Y., Kopcha, W. P. & Papadimitrakopoulos, F. Brightly fluorescent single-walled carbon nanotubes via an oxygen-excluding surfactant organization. Science 323, 1319–1323 (2009).

  19. 19

    Lee, A. J. et al. Bright fluorescence from individual single-walled carbon nanotubes. Nano Lett. 11, 1636–1640 (2011).

  20. 20

    Crochet, J. J., Duque, J. G., Werner, J. H. & Doorn, S. K. Photoluminescence imaging of electronic-impurity-induced exciton quenching in single-walled carbon nanotubes. Nature Nanotech. 7, 126–132 (2012).

  21. 21

    Högele, A., Galland, C., Winger, M. & Imamoğlu, A. Photon antibunching in the photoluminescence spectra of a single carbon nanotube. Phys. Rev. Lett. 100, 217401 (2008).

  22. 22

    Hirori, H., Matsuda, K., Miyauchi, Y., Maruyama, S. & Kanemitsu, Y. Exciton localization of single-walled carbon nanotubes revealed by femtosecond excitation correlation spectroscopy. Phys. Rev. Lett. 97, 257401 (2006).

  23. 23

    Kilina, S., Ramirez, J. & Tretiak, S. Brightening of the lowest exciton in carbon nanotubes via chemical functionalization. Nano Lett. 12, 2306–2312 (2012).

  24. 24

    Nagatsu, K., Chiashi, S., Konabe, S. & Homma, Y. Brightening of triplet dark excitons by atomic hydrogen adsorption in single-walled carbon nanotubes observed by photoluminescence spectroscopy. Phys. Rev. Lett. 105, 157403 (2010).

  25. 25

    Iakoubovskii, K. et al. Midgap luminescence centers in single-wall carbon nanotubes created by ultraviolet illumination. Appl. Phys. Lett. 89, 173108 (2006).

  26. 26

    Lefebvre, J., Austing, D. G., Bond, J. & Finnie, P. Photoluminescence imaging of suspended single-walled carbon nanotubes. Nano Lett. 6, 1603–1608 (2006).

  27. 27

    Tomio, Y. & Suzuura, H. Aharonov–Bohm effect on impurity-bound excitons in semiconducting carbon nanotubes. J. Phys. Conf. Ser. 302, 012005 (2011).

  28. 28

    Takagahara, T. & Hanamura, E. Giant-oscillator-strength effect on excitonic optical nonlinearities due to localization. Phys. Rev. Lett. 56, 2533–2536 (1986).

  29. 29

    Lüer, L. et al. Size and mobility of excitons in (6, 5) carbon nanotubes. Nature Phys. 5, 54–58 (2009).

  30. 30

    Mizuochi, N. et al. Electrically driven single-photon source at room temperature in diamond. Nature Photon. 6, 299–303 (2012).

Download references


This research was supported by Precursory Research for Embryonic Science and Technology (PRESTO) programme (no. 3538 from the Japan Science and Technology Agency (JST)), by Grants-in-Aid for Scientific Research (nos 24681031, 22740195 and 23340085 from the Japan Society for the Promotion of Science (JSPS); no. 22016007 from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT)), and by Asahi Glass Foundation. The authors thank Y. Kawazoe, M. Uesugi, N. Tokitoh, T. Murakami, T. Umeyama and H. Imahori for experimental equipment and T. F. Heinz for discussions.

Author information

Y.M. developed the concept, designed the experiment and prepared the manuscript. Y.M. and M.I. performed the optical measurements. T.K. and M.O. contributed to the time-resolved photoluminescence measurements. M.I. prepared the samples. Y.M., M.I., S.M. and K.M. contributed to interpreting the results and writing the manuscript. All authors discussed the results and commented on the manuscript.

Correspondence to Yuhei Miyauchi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2328 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Miyauchi, Y., Iwamura, M., Mouri, S. et al. Brightening of excitons in carbon nanotubes on dimensionality modification. Nature Photon 7, 715–719 (2013) doi:10.1038/nphoton.2013.179

Download citation

Further reading