Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tenfold reduction of Brownian noise in high-reflectivity optical coatings

Abstract

Thermally induced fluctuations impose a fundamental limit on precision measurement. In optical interferometry, the current bounds of stability and sensitivity are dictated by the excess mechanical damping of the high-reflectivity coatings that comprise the cavity end mirrors. Over the last decade, the dissipation of these amorphous multilayer reflectors has at best been reduced by a factor of two. Here, we demonstrate a new paradigm in optical coating technology based on direct-bonded monocrystalline multilayers, which exhibit both intrinsically low mechanical loss and high optical quality. Employing these ‘crystalline coatings’ as end mirrors in a Fabry–Pérot cavity, we obtain a finesse of 150,000. More importantly, at room temperature, we observe a thermally limited noise floor consistent with a tenfold reduction in mechanical damping when compared with the best dielectric multilayers. These results pave the way for the next generation of ultra-sensitive interferometers, as well as for new levels of laser stability.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Design of the room-temperature 1,064 nm AlGaAs Bragg mirror.
Figure 2: Construction of an optical reference cavity using substrate-transferred crystalline coatings.
Figure 3: Details of the thermal noise measurement system.
Figure 4: Characterization of the crystalline-coating-stabilized 1,064 nm laser noise performance.

References

  1. 1

    Schiller, S. et al. Experimental limits for low-frequency space–time fluctuations from ultrastable optical resonators. Phys. Rev. D 69, 027504 (2004).

    ADS  Article  Google Scholar 

  2. 2

    Ludlow, A. D. et al. Sr lattice clock at 1×10−16 fractional uncertainty by remote optical evaluation with a Ca clock. Science 319, 1805–1808 (2008).

    ADS  Article  Google Scholar 

  3. 3

    Rosenband, T. et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science 319, 1808–1812 (2008).

    ADS  Article  Google Scholar 

  4. 4

    Abbott, B. P. et al. LIGO: the laser interferometer gravitational wave observatory. Rep. Prog. Phys. 72, 076901 (2009).

    ADS  Article  Google Scholar 

  5. 5

    Saulson, P. R. Thermal noise in mechanical experiments. Phys. Rev. D 42, 2437–2445 (1990).

    ADS  Article  Google Scholar 

  6. 6

    Young, B. C., Cruz, F. C., Itano, W. M. & Bergquist, J. C. Visible lasers with subhertz linewidths. Phys. Rev. Lett. 82, 3799–3802 (1999).

    ADS  Article  Google Scholar 

  7. 7

    Ludlow, A. D. et al. Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10−15. Opt. Lett. 32, 641–643 (2007).

    ADS  Article  Google Scholar 

  8. 8

    Millo, J. et al. Ultrastable lasers based on vibration insensitive cavities. Phys. Rev. A 79, 053829 (2009).

    ADS  Article  Google Scholar 

  9. 9

    Jiang, Y. Y. et al. Making optical atomic clocks more stable with 10−16-level laser stabilization. Nature Photon. 5, 158–161 (2011).

    ADS  Article  Google Scholar 

  10. 10

    Kessler, T. et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity. Nature Photon. 6, 687–692 (2012).

    ADS  Article  Google Scholar 

  11. 11

    Nicholson, T. L. et al. Comparison of two independent Sr optical clocks with 1×10−17 stability at 103 s. Phys. Rev. Lett. 109, 230801 (2012).

    ADS  Article  Google Scholar 

  12. 12

    Martin, M. J. et al. A quantum many-body spin system in an optical lattice clock. Science (in the press); preprint at http://lanl.arxiv.org/abs/1212.6291 (2013).

  13. 13

    Numata, K., Kemery, A. & Camp, J. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. Phys. Rev. Lett. 93, 250602 (2004).

    ADS  Article  Google Scholar 

  14. 14

    Bishof, M., Zhang, X., Martin, M. J. & Ye, J. An optical spectrum analyzer with quantum limited noise floor. Preprint at http://lanl.arxiv.org/abs/1303.6741 (2013).

  15. 15

    Callen, H. B. & Welton, T. A. Irreversibility and generalized noise. Phys. Rev. 83, 34–40 (1951).

    ADS  MathSciNet  Article  Google Scholar 

  16. 16

    Landau, L. D. & Lifshitz, E. M. in Statistical Physics Ch. XII (Elsevier, 1996).

    MATH  Google Scholar 

  17. 17

    Harry, G. M. et al. Titania-doped tantala/silica coatings for gravitational wave detection. Class. Quant. Grav. 24, 405–416 (2007).

    ADS  Article  Google Scholar 

  18. 18

    Iga, K. Surface-emitting laser—its birth and generation of new optoelectronics field. IEEE J. Sel. Top. Quant. 6, 1201–1215 (2000).

    Article  Google Scholar 

  19. 19

    Aspelmeyer, M., Meystre, P. & Schwab, K. Quantum optomechanics. Phys. Today 65, 29–35 (2012).

    Article  Google Scholar 

  20. 20

    Madsen, M. et al. Nanoscale semiconductor ‘X’ on substrate ‘Y’—processes, devices, and applications. Adv. Mater. 23, 3115–3127 (2011).

    Article  Google Scholar 

  21. 21

    Rempe, G., Thompson, R. J., Kimble, H. J. & Lalezari, R. Measurement of ultralow losses in an optical interferometer. Opt. Lett. 17, 363–365 (1992).

    ADS  Article  Google Scholar 

  22. 22

    Crooks, D. R. M. et al. Excess mechanical loss associated with dielectric mirror coatings on test masses in interferometric gravitational wave detectors. Class. Quant. Grav. 19, 883–896 (2002).

    ADS  Article  Google Scholar 

  23. 23

    Harry, G. M. et al. Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings. Class. Quant. Grav. 19, 897–918 (2002).

    ADS  Article  Google Scholar 

  24. 24

    Penn, S. D. et al. Mechanical loss in tantala/silica dielectric mirror coatings. Class. Quant. Grav. 20, 2917–2928 (2003).

    ADS  Article  Google Scholar 

  25. 25

    Harry, G., Bodiya, T. & DeSalvo, R. in Gravitational Wave Detection (eds Ottaway, D. J. & Penn, S. D.) Ch. 14, 222 (Cambridge Univ. Press, 2012).

    Google Scholar 

  26. 26

    Braginsky, V. B., Gorodetsky, M. L. & Vyatchanin, S. P. Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae. Phys. Lett. A 264, 1–10 (1999).

    ADS  Article  Google Scholar 

  27. 27

    Braginsky, V. B., Gorodetsky, M. L. & Vyatchanin, S. P. Thermo-refractive noise in gravitational wave antennae. Phys. Lett. A 271, 303–307 (2000).

    ADS  Article  Google Scholar 

  28. 28

    Evans, M. et al. Thermo-optic noise in coated mirrors for high-precision optical measurements. Phys. Rev. D 78, 102003 (2008).

    ADS  Article  Google Scholar 

  29. 29

    Gorodetsky, M. L. Thermal noises and noise compensation in high-reflection multilayer coating. Phys. Lett. A 372, 6813–6822 (2008).

    ADS  Article  Google Scholar 

  30. 30

    Penn, S. D. et al. Frequency and surface dependence of the mechanical loss in fused silica. Phys. Lett. A 352, 3–6 (2006).

    ADS  Article  Google Scholar 

  31. 31

    Amairi, S. et al. Reducing the effect of thermal noise in optical cavities. Appl. Phys. B http://dx.doi.org/10.1007/S00340-013-5464-8 (2013).

  32. 32

    Bondarescu, M., Kogan, O. & Chen, Y. Optimal light beams and mirror shapes for future LIGO interferometers. Phys. Rev. D 78, 082002 (2008).

    ADS  Article  Google Scholar 

  33. 33

    Kimble, H. J., Lev, B. L. & Ye, J. Optical interferometers with reduced sensitivity to thermal noise. Phys. Rev. Lett. 101, 260602 (2008).

    ADS  Article  Google Scholar 

  34. 34

    Friedrich, D. et al. Waveguide grating mirror in a fully suspended 10 meter Fabry–Perot cavity. Opt. Express 19, 14955–14963 (2011).

    ADS  Article  Google Scholar 

  35. 35

    Kemiktarak, U., Metcalfe, M., Durand, M. & Lawall, J. Mechanically compliant grating reflectors for optomechanics. Appl. Phys. Lett. 100, 061124 (2012).

    ADS  Article  Google Scholar 

  36. 36

    Alnis, J. et al. Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization. Phys. Rev. A 84, 011804 (2011).

    ADS  Article  Google Scholar 

  37. 37

    Cole, G. D., Gröblacher, S., Gugler, K., Gigan, S. & Aspelmeyer, M. Monocrystalline AlxGa1–xAs heterostructures for high-reflectivity high-Q micromechanical resonators in the megahertz regime. Appl. Phys. Lett. 92, 261108 (2008).

    ADS  Article  Google Scholar 

  38. 38

    Cole, G. D. in Proc. SPIE 8458, Optics & Photonics, Optical Trapping and Optical Micromanipulation IX, 8458–07 (SPIE, 2012).

    Google Scholar 

  39. 39

    Jewell, J. L., Scherer, A., McCall, S. L., Gossard, A. C. & English, J. H. GaAs–AlAs monolithic microresonator arrays. Appl. Phys. Lett. 51, 94–96 (1987).

    ADS  Article  Google Scholar 

  40. 40

    Gröblacher, S., Gigan, S., Böhm, H. R., Zeilinger, A. & Aspelmeyer, M. Radiation-pressure self-cooling of a micromirror in a cryogenic environment. Europhys. Lett. 81, 54003 (2008).

    ADS  Article  Google Scholar 

  41. 41

    Black, A. et al. Wafer fusion: materials issues and device results. IEEE J. Sel. Top. Quant. 3, 943–951 (1997).

    Article  Google Scholar 

  42. 42

    Bai, Y., Cole, G. D., Bulsara, M. T. & Fitzgerald, E. A. Fabrication of GaAs-on-insulator via low temperature wafer bonding and sacrificial etching of Ge by XeF2 . J. Electrochem. Soc. 159, H183–H190 (2012).

    Article  Google Scholar 

  43. 43

    Konagai, M., Sugimoto, M. & Takahashi, K. High efficiency GaAs thin film solar cells by peeled film technology. J. Cryst. Growth 45, 277–280 (1978).

    ADS  Article  Google Scholar 

  44. 44

    Yablonovitch, E., Hwang, D. M., Gmitter, T. J., Florez, L. T. & Harbison, J. P. Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates. Appl. Phys. Lett. 56, 2419–2421 (1990).

    ADS  Article  Google Scholar 

  45. 45

    Notcutt, M. et al. Contribution of thermal noise to frequency stability of rigid optical cavity via hertz-linewidth lasers. Phys. Rev. A 73, 031804 (2006).

    ADS  Article  Google Scholar 

  46. 46

    Schibli, T. et al. Optical frequency comb with submillihertz linewidth and more than 10 W average power. Nature Photon. 2, 355–359 (2008).

    ADS  Article  Google Scholar 

  47. 47

    Benko, C. et al. Full phase stabilization of a Yb:fiber femtosecond frequency comb via high-bandwidth transducers. Opt. Lett. 37, 2196–2198 (2012).

    ADS  Article  Google Scholar 

  48. 48

    Yamamoto, K. et al. Measurement of the mechanical loss of a cooled reflective coating for gravitational wave detection. Phys. Rev. D 74, 022002 (2006).

    ADS  Article  Google Scholar 

  49. 49

    Knigge, A., Zorn, M., Wenzel, H., Weyers, M. & Trankle, C. High efficiency AlGaInP-based 650 nm vertical-cavity surface-emitting lasers. Electron. Lett. 37, 1222–1223 (2001).

    Article  Google Scholar 

  50. 50

    Spitzer, W. G. & Whelan, J. M. Infrared absorption and electron effective mass in n-type gallium arsenide. Phys. Rev. 114, 59–63 (1959).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank M.R. Abernathy, R.X. Adhikari, A. Alexandrovski, C. Benko, T. Chalermsongsak, G.M. Harry, R. Lalezari, L-S. Ma, E. Murphy, M. Notcutt, S.D. Penn, A. Peters, P. Ullmann and R. Yanka for discussions and technical assistance. Work at the University of Vienna is supported by the Austrian Science Fund (FWF), the European Commission and the European Research Council (ERC) Starting Grant Program. The work at CMS is supported by the Austria Wirtschaftsservice GmbH (AWS) and the ERC Proof of Concept Initiative. Work at JILA is supported by the US National Institute of Standards and Technology (NIST), the DARPA QuASAR Program, and the US National Science Foundation (NSF) Physics Frontier Center at JILA. Microfabrication was carried out at the Center for Micro- and Nanostructures (ZMNS) of the Vienna University of Technology.

Author information

Affiliations

Authors

Contributions

G.D.C. and M.A. designed the epitaxial multilayer, developed the substrate transfer process, and fabricated the bonded mirror assemblies. W.Z., M.J.M. and J.Y. designed and characterized the optical cavity, performed the laser frequency noise and stability measurements, and analysed the data. All authors contributed to writing the manuscript.

Corresponding authors

Correspondence to Garrett D. Cole or Jun Ye or Markus Aspelmeyer.

Ethics declarations

Competing interests

G.D.C. and M.A. are co-founders of a startup company (Crystalline Mirror Solutions) and co-inventors on an international patent (European Application 11010091.4) focusing on the bonded mirror technology described in the Article.

Supplementary information

Supplementary information

Supplementary information (PDF 833 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cole, G., Zhang, W., Martin, M. et al. Tenfold reduction of Brownian noise in high-reflectivity optical coatings. Nature Photon 7, 644–650 (2013). https://doi.org/10.1038/nphoton.2013.174

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing