Entanglement-enhanced detection of single-photon scattering events

Subjects

Abstract

The ability to detect the interaction of light and matter at the single-particle level is becoming increasingly important for many areas of science and technology. The absorption or emission of a photon on a narrow transition of a trapped ion can be detected with near unit probability1,2, thereby enabling the realization of ultra-precise ion clocks3,4 and quantum information processing applications5. Extending this sensitivity to broad transitions is challenging due to the difficulty of detecting the rapid photon scattering events in this case. Here, we demonstrate a technique to detect the scattering of a single photon on a broad optical transition with high sensitivity. Our approach is to use an entangled state to amplify the tiny momentum kick an ion receives upon scattering a photon. The method should find applications in spectroscopy of atomic and molecular ions6,7,8,9 and quantum information processing.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Cat-state spectroscopy in phase space.
Figure 2: Experimental details.
Figure 3: Cat-state spectroscopy results.

References

  1. 1

    Dehmelt, H. G. Mono-ion oscillator as potential ultimate laser frequency standard. IEEE Trans. Instrum. Meas. 31, 83–87 (1982).

    ADS  Article  Google Scholar 

  2. 2

    Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003).

    ADS  Article  Google Scholar 

  3. 3

    Rosenband, T. et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science 319, 1808–1812 (2008).

    ADS  Article  Google Scholar 

  4. 4

    Chou, C., Hume, D., Koelemeij, J., Wineland, D. & Rosenband, T. Frequency comparison of two high-accuracy Al+ optical clocks. Phys. Rev. Lett. 104, 070802 (2010).

    ADS  Article  Google Scholar 

  5. 5

    Häffner, H., Roos, C. F. & Blatt, R. Quantum computing with trapped ions. Phys. Rep. 469, 155–203 (2008).

    ADS  MathSciNet  Article  Google Scholar 

  6. 6

    Nguyen, J. H. V. et al. Challenges of laser-cooling molecular ions. New J. Phys. 13, 063023 (2011).

    ADS  Article  Google Scholar 

  7. 7

    Mur-Petit, J. et al. Temperature-independent quantum logic for molecular spectroscopy. Phys. Rev. A 85, 022308 (2012).

    ADS  Article  Google Scholar 

  8. 8

    Leibfried, D. Quantum state preparation and control of single molecular ions. New J. Phys. 14, 023029 (2012).

    ADS  Article  Google Scholar 

  9. 9

    Ding, S. & Matsukevich, D. N. Quantum logic for the control and manipulation of molecular ions using a frequency comb. New J. Phys. 14, 023028 (2012).

    ADS  Article  Google Scholar 

  10. 10

    Wineland, D. J. & Itano, W. M. Laser cooling of atoms. Phys. Rev. A 20, 1521–1540 (1979).

    ADS  Article  Google Scholar 

  11. 11

    Larson, D. J., Bergquist, J. C., Bollinger, J. J., Itano, W. M. & Wineland, D. J. Sympathetic cooling of trapped ions: a laser-cooled two-species nonneutral ion plasma. Phys. Rev. Lett. 57, 70–73 (1986).

    ADS  Article  Google Scholar 

  12. 12

    Schmidt, P. O. et al. Spectroscopy using quantum logic. Science 309, 749–752 (2005).

    ADS  Article  Google Scholar 

  13. 13

    Hume, D. B. et al. Trapped-ion state detection through coherent motion. Phys. Rev. Lett. 107, 243902 (2011).

    ADS  Article  Google Scholar 

  14. 14

    Weiss, D. S., Young, B. C. & Chu, S. Precision measurement of the photon recoil of an atom using atomic interferometry. Phys. Rev. Lett. 70, 2706–2709 (1993).

    ADS  Article  Google Scholar 

  15. 15

    Clark, C. R., Goeders, J. E., Dodia, Y. K., Viteri, C. R. & Brown, K. R. Detection of single-ion spectra by Coulomb-crystal heating. Phys. Rev. A 81, 043428 (2010).

    ADS  Article  Google Scholar 

  16. 16

    Poyatos, J. F., Cirac, J. I., Blatt, R. & Zoller, P. Trapped ions in the strong-excitation regime: ion interferometry and nonclassical states. Phys. Rev. A 54, 1532–1540 (1996).

    ADS  Article  Google Scholar 

  17. 17

    Monroe, C. R., Meekhof, D. M., King, B. E. & Wineland, D. J. A ‘Schrodinger cat’ superposition state of an atom. Science 272, 1131–1136 (1996).

    ADS  MathSciNet  Article  Google Scholar 

  18. 18

    Chaturvedi, S., Sriram, M. S. & Srinivasan, V. Berry's phase for coherent states. J. Phys. A 20, L1071–L1075 (1987).

    ADS  MathSciNet  Article  Google Scholar 

  19. 19

    Turchette, Q. A. et al. Decoherence and decay of motional quantum states of a trapped atom coupled to engineered reservoirs. Phys. Rev. A 62, 053807 (2000).

    ADS  Article  Google Scholar 

  20. 20

    Munro, W. J., Nemoto, K., Milburn, G. J. & Braunstein, S. L. Weak-force detection with superposed coherent states. Phys. Rev. A 66, 023819 (2002).

    ADS  Article  Google Scholar 

  21. 21

    Jin, J. & Church, D. A. Precision lifetimes for the Ca+ 4p2P levels: experiment challenges theory at the 1% level. Phys. Rev. Lett. 70, 3213–3216 (1993).

    ADS  Article  Google Scholar 

  22. 22

    Ramm, M., Pruttivarasin, T., Kokish, M., Talukdar, I. & Häffner, H. Precision measurement method for branching fractions of excited P1/2 states applied to 40Ca+. Preprint at http://arxiv.org/abs/1305.0858v1 (2013).

  23. 23

    Haljan, P. C., Brickman, K-A., Deslauriers, L., Lee, P. J. & Monroe, C. Spin-dependent forces on trapped ions for phase-stable quantum gates and entangled states of spin and motion. Phys. Rev. Lett. 94, 153602 (2005).

    ADS  Article  Google Scholar 

  24. 24

    Itano, W. M. et al. Quantum projection noise: population fluctuations in two-level systems. Phys. Rev. A 47, 3554–3570 (1993).

    ADS  Article  Google Scholar 

  25. 25

    Kirchmair, G. et al. Deterministic entanglement of ions in thermal states of motion. New J. Phys. 11, 023002 (2009).

    ADS  Article  Google Scholar 

  26. 26

    Lucas, D. M. et al. Isotope-selective photoionization for calcium ion trapping. Phys. Rev. A 69, 012711 (2004).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Commission via the integrated project Atomic QUantum TEchnologies and a Marie Curie International Incoming Fellowship.

Author information

Affiliations

Authors

Contributions

C.R. conceived and designed the experiments. C.H., B.L., P.J., R.G. and C.R. performed the experiments. C.H., B.L. and C.R. analysed the data. C.H., B.L., R.G., R.B. and C.R. contributed materials and analysis tools. C.H., B.L. and C.R. wrote the paper.

Corresponding author

Correspondence to C. F. Roos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 521 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hempel, C., Lanyon, B., Jurcevic, P. et al. Entanglement-enhanced detection of single-photon scattering events. Nature Photon 7, 630–633 (2013). https://doi.org/10.1038/nphoton.2013.172

Download citation

Further reading