Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultraweak long-range interactions of solitons observed over astronomical distances

Abstract

We report what we believe is the weakest interaction between solitons ever observed. Our experiment involves temporal optical cavity solitons recirculating in a coherently driven passive optical-fibre ring resonator. We observe pairs of solitons interacting over a range as large as 8,000 times their width. In the most extreme case, their temporal separation changes as slowly as a fraction of an attosecond per roundtrip of the 100-m-long resonator, or equivalently 1/10,000 of the wavelength of the soliton carrier wave per characteristic dispersive length. The interactions are so weak that, at the speed of light, an effective propagation distance of the order of an astronomical unit can be required to reveal the full dynamical evolution. The interaction is mediated by transverse acoustic waves generated in the optical fibre by the propagating solitons through electrostriction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up.
Figure 2: Cavity soliton characteristics.
Figure 3: First example of long-range interactions of a pair of cavity solitons.
Figure 4: Acoustic response.
Figure 5: Interactions of two cavity solitons mediated by the first acoustic echo.

Similar content being viewed by others

References

  1. Russell, J. S. in Report of the Fourteenth Meeting of the British Association for the Advancement of Science, York, September 1844, 311–390, Plates XLVII–LVII (John Murray, 1845).

    Google Scholar 

  2. Zabusky, N. J. & Kruskal, M. D. Interaction of ‘solitons’ in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965).

    Article  ADS  Google Scholar 

  3. Hasegawa, A. & Tappert, F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 23, 142–144 (1973).

    Article  ADS  Google Scholar 

  4. Akhmediev, N. N. & Ankiewicz, A. Solitons — Nonlinear Pulses and Beams 1st edn (Chapman & Hall, 1997).

    MATH  Google Scholar 

  5. Stegeman, G. I. & Segev, M. Optical spatial solitons and their interactions: universality and diversity. Science 286, 1518–1523 (1999).

    Article  Google Scholar 

  6. Craig, W., Guyenne, P., Hammack, J., Henderson, D. & Sulem, C. Solitary water wave interactions. Phys. Fluids 18, 057106 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  7. Gardner, C. S., Greene, J. M., Kruskal, M. D. & Miura, R. M. Method for solving the Korteweg–deVries equation. Phys. Rev. Lett. 19, 1095–1097 (1967).

    Article  ADS  Google Scholar 

  8. Lonngren, K. E. Soliton experiments in plasmas. Plasma Phys. 25, 943–982 (1983).

    Article  ADS  Google Scholar 

  9. Saha, M. & Kofane, T. C. Long-range interactions between adjacent and distant bases in a DNA and their impact on the ribonucleic acid polymerase–DNA dynamics. Chaos 22, 013116 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  10. Polturak, E., deVegvar, P. G. N., Zeise, E. K. & Lee, D. M. Solitonlike propagation of zero sound in superfluid 3He. Phys. Rev. Lett. 46, 1588–1591 (1981).

    Article  ADS  Google Scholar 

  11. Burger, S. et al. Dark solitons in Bose–Einstein condensates. Phys. Rev. Lett. 83, 5198–5201 (1999).

    Article  ADS  Google Scholar 

  12. Denschlag, J. et al. Generating solitons by phase engineering of a Bose–Einstein condensate. Science 287, 97–101 (2000).

    Article  ADS  Google Scholar 

  13. Bjorkholm, J. E. & Ashkin, A. A. cw self-focusing and self-trapping of light in sodium vapor. Phys. Rev. Lett. 32, 129–132 (1974).

    Article  ADS  Google Scholar 

  14. Mollenauer, L. F., Stolen, R. H. & Gordon, J. P. Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095–1098 (1980).

    Article  ADS  Google Scholar 

  15. Barthelemy, A., Maneuf, S. & Froehly, C. Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de Kerr. Opt. Commun. 55, 201–206 (1985).

    Article  ADS  Google Scholar 

  16. Segev, M. Optical spatial solitons. Opt. Quant. Electron. 30, 503–533 (1998).

    Article  Google Scholar 

  17. Barland, S. et al. Cavity solitons as pixels in semiconductor microcavities. Nature 419, 699–702 (2002).

    Article  ADS  Google Scholar 

  18. Grelu, P. & Akhmediev, N. N. Dissipative solitons for mode-locked lasers. Nature Photon. 6, 84–92 (2012).

    Article  ADS  Google Scholar 

  19. Gordon, J. P. Interaction forces among solitons in optical fibers. Opt. Lett. 8, 596–598 (1983).

    Article  ADS  Google Scholar 

  20. Reynaud, F. & Barthelemy, A. Optically controlled interaction between two fundamental soliton beams. Europhys. Lett. 12, 401–405 (1990).

    Article  ADS  Google Scholar 

  21. Tikhonenko, V., Christou, J. & Luther-Davies, B. Three dimensional bright spatial soliton collision and fusion in a saturable nonlinear medium. Phys. Rev. Lett. 76, 2698–2701 (1996).

    Article  ADS  Google Scholar 

  22. Shih, M., Segev, M. & Salamo, G. Three-dimensional spiraling of interacting spatial solitons. Phys. Rev. Lett. 78, 2551–2554 (1997).

    Article  ADS  Google Scholar 

  23. Królikowski, W., Luther-Davies, B., Denz, C. & Tschudi, T. Annihilation of photorefractive solitons. Opt. Lett. 23, 97–99 (1998).

    Article  ADS  Google Scholar 

  24. Snyder, A. W., Mitchell, D. J., Poladian, L. & Ladouceur, F. Self-induced optical fibers: spatial solitary waves. Opt. Lett. 16, 21–23 (1991).

    Article  ADS  Google Scholar 

  25. Schäpers, B., Feldmann, M., Ackemann, T. & Lange, W. Interaction of localized structures in an optical pattern-forming system. Phys. Rev. Lett. 85, 748–751 (2000).

    Article  ADS  Google Scholar 

  26. Ramazza, P. L. et al. Tailoring the profile and interactions of optical localized structures. Phys. Rev. E 65, 066204 (2002).

    Article  ADS  Google Scholar 

  27. Ultanir, E. A., Stegeman, G., Lange, C. H. & Lederer, F. Coherent interactions of dissipative spatial solitons. Opt. Lett. 29, 283–285 (2004).

    Article  ADS  Google Scholar 

  28. Bödeker, H. U., Liehr, A. W., Frank, T. D., Friedrich, R. & Purwins, H-G. Measuring the interaction law of dissipative solitons. New J. Phys. 6, 62 (2004).

    Article  ADS  Google Scholar 

  29. Smith, K. & Mollenauer, L. F. Experimental observation of soliton interaction over long fiber paths: discovery of a long-range interaction. Opt. Lett. 14, 1284–1286 (1989).

    Article  ADS  Google Scholar 

  30. Rotschild, C., Alfassi, B., Cohen, O. & Segev, M. Long-range interactions between optical solitons. Nature Phys. 2, 769–774 (2006).

    Article  ADS  Google Scholar 

  31. Chouli, S. & Grelu, P. Soliton rains in a fiber laser: an experimental study. Phys. Rev. A 81, 063829 (2010).

    Article  ADS  Google Scholar 

  32. Skryabin, D. V. & Gorbach, A. V. Colloquium: looking at a soliton through the prism of optical supercontinuum. Rev. Mod. Phys. 82, 1287–1299 (2010).

    Article  ADS  Google Scholar 

  33. Allen, A. J., Jackson, D. P., Barenghi, C. F. & Proukakis, N. P. Long-range sound-mediated dark-soliton interactions in trapped atomic condensates. Phys. Rev. A 83, 013613 (2011).

    Article  ADS  Google Scholar 

  34. Turaev, D., Vladimirov, A. G. & Zelik, S. Long-range interaction and synchronization of oscillating dissipative solitons. Phys. Rev. Lett. 108, 263906 (2012).

    Article  ADS  Google Scholar 

  35. Leo, F. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nature Photon. 4, 471–476 (2010).

    Article  ADS  Google Scholar 

  36. Tlidi, M., Mandel, P. & Lefever, R. Localized structures and localized patterns in optical bistability. Phys. Rev. Lett. 73, 640–643 (1994).

    Article  ADS  Google Scholar 

  37. Firth, W. J. & Weiss, C. O. Cavity and feedback solitons. Opt. Photon News 13, 54–58 (February 2002).

    Article  ADS  Google Scholar 

  38. Lugiato, L. A. Introduction to the feature section on cavity solitons: an overview. IEEE J. Quantum Electron. 39, 193–196 (2003).

    Article  ADS  Google Scholar 

  39. Akhmediev, N. N. & Ankiewicz, A. (eds) Dissipative Solitons: From Optics to Biology and Medicine, Vol. 751 (Lecture Notes in Physics, Springer, 2008).

    MATH  Google Scholar 

  40. Dianov, E. M., Luchnikov, A. V., Pilipetskii, A. N. & Prokhorov, A. M. Long-range interaction of picosecond solitons through excitation of acoustic waves in optical fibers. Appl. Phys. B 54, 175–180 (1992).

    Article  ADS  Google Scholar 

  41. Townsend, P. D., Poustie, A. J., Hardman, P. J. & Blow, K. J. Measurement of the refractive-index modulation generated by electrostriction-induced acoustic waves in optical fibers. Opt. Lett. 21, 333–335 (1996).

    Article  ADS  Google Scholar 

  42. Jaouën, Y. & du Mouza, L. Transverse Brillouin effect produced by electrostriction in optical fibers and its impact on soliton transmission systems. Opt. Fib. Tech. 7, 141–169 (2001).

    Article  Google Scholar 

  43. Firth, W. Temporal cavity solitons: buffering optical data. Nature Photon. 4, 415–417 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  44. Agrawal, G. P. Nonlinear Fiber Optics 4th edn (Academic Press, 2006).

    MATH  Google Scholar 

  45. Trebino, R. et al. Measuring ultrashort laser pulses in the time–frequency domain using frequency-resolved optical gating. Rev. Sci. Instrum. 68, 3277–3295 (1997).

    Article  ADS  Google Scholar 

  46. Mitschke, F. M. & Mollenauer, L. F. Experimental observation of interaction forces between solitons in optical fibers. Opt. Lett. 12, 355–357 (1987).

    Article  ADS  Google Scholar 

  47. Fellegara, A., Melloni, A. & Martinelli, M. Measurement of the frequency response induced by electrostriction in optical fibers. Opt. Lett. 22, 1615–1617 (1997).

    Article  ADS  Google Scholar 

  48. Buckland, E. L. Mode-profile dependence of the electrostrictive response in fibers. Opt. Lett. 24, 872–874 (1999).

    Article  ADS  Google Scholar 

  49. Biryukov, A. S., Sukharev, M. E. & Dianov, E. M. Excitation of sound waves upon propagation of laser pulses in optical fibres. Quantum Electron. 32, 765–775 (2002).

    Article  ADS  Google Scholar 

  50. Coen, S., Randle, H. G., Sylvestre, T. & Erkintalo, M. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model. Opt. Lett. 38, 37–39 (2013).

    Article  ADS  Google Scholar 

  51. Pilipetskii, A. N., Golovchenko, E. A. & Menyuk, C. R. Acoustic effect in passively mode-locked fiber ring lasers. Opt. Lett. 20, 907–909 (1995).

    Article  ADS  Google Scholar 

  52. Kippenberg, T. J., Rokhsari, H., Carmon, T., Scherer, A. & Vahala, K. J. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005).

    Article  ADS  Google Scholar 

  53. Lugiato, L. A. & Lefever, R. Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 58, 2209–2211 (1987).

    Article  ADS  Google Scholar 

  54. Buckland, E. L. & Boyd, R. W. Electrostrictive contribution to the intensity-dependent refractive index of optical fibers. Opt. Lett. 21, 1117–1119 (1996).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Marsden Fund Council (government funding), administered by the Royal Society of New Zealand. The driving laser was funded from the Faculty Research Development Fund of the Faculty of Science of the University of Auckland. J.K.J. also acknowledges the support of a University of Auckland Doctoral Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

J.K.J. performed the experiments. M.E. identified the physical origin of the interactions, incorporated the acoustic response into the mean field model, wrote a first draft of the paper, and performed the split-step Fourier simulations. Overall, J.K.J. and M.E. contributed equally to this work. S.G.M. supervised the experimental work. S.C. programmed the Newton solver and performed the related computations, wrote the final version of the paper, and supervised the overall project.

Corresponding authors

Correspondence to Jae K. Jang or Stéphane Coen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 814 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, J., Erkintalo, M., Murdoch, S. et al. Ultraweak long-range interactions of solitons observed over astronomical distances. Nature Photon 7, 657–663 (2013). https://doi.org/10.1038/nphoton.2013.157

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.157

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing