Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Compact high-repetition-rate source of coherent 100 eV radiation

Abstract

Coherently enhancing laser pulses in a passive cavity provides ideal conditions for high-order harmonic generation in a gas, with repetition rates around 100 MHz (refs 1,2,3). Recently, extreme-ultraviolet radiation with photon energies of up to 30 eV was obtained, which is sufficiently bright for direct frequency-comb spectroscopy at 20 eV (ref. 4). Here, we identify a route to scaling these radiation sources to higher photon energies. We demonstrate that the ionization-limited attainable intracavity peak intensity increases with decreasing pulse duration. By enhancing nonlinearly compressed pulses of an Yb-based laser and coupling out the harmonics through a pierced cavity mirror, we generate spatially coherent 108 eV (11.45 nm) radiation at 78 MHz. Exploiting the full potential of the demonstrated techniques will afford high-photon-flux ultrashort-pulsed extreme-ultraviolet sources for a number of applications in science and technology, including photoelectron spectroscopy, coincidence spectroscopy with femtosecond to attosecond resolution5,6 and characterization of components and materials for nanolithography7.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental set-up for intracavity HHG.
Figure 2: XUV output coupling mirror, fundamental beam profiles and calculated output coupling efficiency.
Figure 3: Intensity upper bound for uncompressed and nonlinearly compressed pulses.
Figure 4: Harmonic spectra and beam profiles.

References

  1. 1

    Gohle, C. et al. A frequency comb in the extreme ultraviolet. Nature 436, 234–237 (2005).

    ADS  Article  Google Scholar 

  2. 2

    Jones, R. J., Moll, K. D., Thorpe, M. J. & Ye, J. Coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys. Rev. Lett. 94, 193201 (2005).

    ADS  Article  Google Scholar 

  3. 3

    Hartl, I. et al. Cavity-enhanced similariton Yb-fiber laser frequency comb: 3×1014 W/cm2 peak intensity at 136 MHz. Opt. Lett. 32, 2870–2872 (2007).

    ADS  Article  Google Scholar 

  4. 4

    Cingöz, A. et al. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature 482, 68–71 (2012).

    ADS  Article  Google Scholar 

  5. 5

    Stolow, A., Bragg, A. E. & Neumark, D. M. Femtosecond time-resolved photo electron spectroscopy. Chem. Rev. 104, 1719–1757 (2004).

    Article  Google Scholar 

  6. 6

    Zhang, C-H. & Thumm, U. Attosecond photoelectron spectroscopy of metal surfaces. Phys. Rev. Lett. 102, 123601 (2009).

    ADS  Article  Google Scholar 

  7. 7

    Lin, J. et al. At-wavelength inspection of sub-40 nm defects in extreme ultraviolet lithography mask blank by photoemission electron microscopy. Opt. Lett. 32, 1875–1877 (2007).

    ADS  Article  Google Scholar 

  8. 8

    Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    ADS  Article  Google Scholar 

  9. 9

    Hentschel M. et al. Attosecond metrology. Nature 414, 509–513 (2001).

    ADS  Article  Google Scholar 

  10. 10

    Sansone, G., Poletto, L. & Nisoli, M. High-energy attosecond light sources. Nature Photon. 5, 655–663 (2011).

    ADS  Article  Google Scholar 

  11. 11

    Mills, A., Hammond, T. J., Lam, M. H. C. & Jones, D. J. XUV frequency combs via femtosecond enhancement cavities. J. Phys. B 45, 142001 (2012).

    ADS  Article  Google Scholar 

  12. 12

    Park, I-Y. et al. Plasmonic generation of ultrashort extreme-ultraviolet light pulses. Nature 5, 677–681 (2011).

    Google Scholar 

  13. 13

    Vernaleken, A. et al. Single-pass high-harmonic generation at 20.8 MHz repetition rate. Opt. Lett. 36, 3428–3430 (2011).

    ADS  Article  Google Scholar 

  14. 14

    Stockman, M., Kling, M. F., Kleineberg, U. & Krausz, F. Attosecond nanoplasmonic-field microscope. Nature Photon. 1, 539–544 (2007).

    ADS  Article  Google Scholar 

  15. 15

    Chew, S. H. et al. Time-of-flight-photoelectron emission microscopy on plasmonic structures using attosecond extreme ultraviolet pulses. Appl. Phys. Lett. 100, 051904 (2012).

    ADS  Article  Google Scholar 

  16. 16

    Sansone, G. et al. Electron localization following attosecond molecular photoionization. Nature 465, 763–766 (2010).

    ADS  Article  Google Scholar 

  17. 17

    Bergues, B. et al. Attosecond tracing of correlated electron-emission in non-sequential double ionization. Nat. Commun. 3, 813 (2012).

    ADS  Article  Google Scholar 

  18. 18

    Yost, D. et al. Power optimization of XUV frequency combs for spectroscopy applications [Invited]. Opt. Express 19, 23483–23493 (2011).

    ADS  Article  Google Scholar 

  19. 19

    Lee, J., Carlson, D. R. & Jones, R. J. Optimizing intracavity high harmonic generation for XUV fs frequency combs. Opt. Express 19, 23315–23326 (2011).

    ADS  Article  Google Scholar 

  20. 20

    Carlson, D. R., Lee, J., Mongelli, J., Wright, E. M. & Jones, R. J. Intracavity ionization and pulse formation in femtosecond enhancement cavities. Opt. Lett. 36, 2991–2993 (2011).

    ADS  Article  Google Scholar 

  21. 21

    Allison, T. K., Cingöz, A., Yost, D. C. & Ye, J. Extreme nonlinear optics in a femtosecond enhancement cavity. Phys. Rev. Lett. 107, 183903 (2011).

    ADS  Article  Google Scholar 

  22. 22

    Moll, K. D., Jones, R. J. & Ye, J. Output coupling methods for cavity based high-harmonic generation. Opt. Express 14, 8189–8197 (2006).

    ADS  Article  Google Scholar 

  23. 23

    Eidam, T., Röser, F., Schmidt, O., Limpert, J. & Tünnermann, A. 57 W, 27 fs pulses from a fiber laser system using nonlinear compression. Appl. Phys. B 92, 9–12 (2008).

    ADS  Article  Google Scholar 

  24. 24

    Pupeza, I. et al. Power scaling of a high-repetition-rate enhancement cavity. Opt. Lett. 35, 2052–2054 (2010).

    ADS  Article  Google Scholar 

  25. 25

    Jocher, C., Eidam, T., Hädrich, S., Limpert, J. & Tünnermann, A. Sub 25 fs pulses from solid core nonlinear compression stage at 250 W of average power. Opt. Lett. 37, 4407–4410 (2012).

    ADS  Article  Google Scholar 

  26. 26

    Paschotta, R. Beam quality deterioration of lasers caused by intracavity beam distortions. Opt. Express 14, 6069–6074 (2006).

    ADS  Article  Google Scholar 

  27. 27

    Hädrich, S. et al. Generation of µW level plateau harmonics at high repetition rate. Opt. Express 19, 19374–19383 (2011).

    ADS  Article  Google Scholar 

  28. 28

    Jaegle, P. Coherent Sources of XUV Radiation (Springer, 2006).

    Google Scholar 

  29. 29

    L'Huillier, A., Balcou, P., Candel S., Schafer, K. J. & Kulander, K. C. Calculations of high-order harmonic-generation processes in xenon at 1064 nm. Phys. Rev. A 46, 2778–2790 (1992).

    ADS  Article  Google Scholar 

  30. 30

    Drever, R. W. P. et al. Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 31, 97–105 (1983).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) Cluster of Excellence, Munich Centre for Advanced Photonics (MAP) (www.munich-photonics.de), by the KORONA Max-Planck-Institut für Quantenoptik (MPQ)/Fraunhofer-Institut für Lasertechnik (ILT) cooperation and by the Bundesministerium für Bildung und Forschung (BMBF) under PhoNa − Photonische Nanomaterialien (contract no. 03IS2101B).

Author information

Affiliations

Authors

Contributions

The project was planned by I.P., S.H., J.R., J.L., T.U., A.T., T.W.H., A.A., F.K. and E.F. The Yb:fibre laser was designed and built by T.E., J.L. and A.T. The piercing in the substrate for the XUV output coupling mirror was realized by D.E., J.W. and P.R. The HHG experiments and model development were performed by I.P., S.H., T.E., H.C., J.W. and E.F. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to I. Pupeza.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pupeza, I., Holzberger, S., Eidam, T. et al. Compact high-repetition-rate source of coherent 100 eV radiation. Nature Photon 7, 608–612 (2013). https://doi.org/10.1038/nphoton.2013.156

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing