Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An ultrafast terahertz scanning tunnelling microscope

Abstract

Ultrafast studies1,2 of excitations on the nanometre scale are essential for guiding applications in nanotechnology. Efforts to integrate femtosecond lasers with scanning tunnelling microscopes (STMs)3 have yielded a number of ultrafast STM techniques4,5,6,7,8,9,10,11,12,13,14, but the basic ability to directly modulate the STM junction bias while maintaining nanometre spatial resolution has been limited to 10 ps (refs 7,8) and has required specialized probe or sample structures. Here, without any modification to the STM design, we modulate the STM junction bias by coupling terahertz pulses to the scanning probe tip of an STM and demonstrate terahertz-pulse-induced tunnelling in an STM. The terahertz STM (THz-STM) provides simultaneous subpicosecond (<500 fs) time resolution and nanometre (2 nm) imaging resolution under ambient laboratory conditions, and can directly image ultrafast carrier capture into a single InAs nanodot. The THz-STM accesses an ultrafast tunnelling regime that opens the door to subpicosecond scanning probe microscopy of materials with atomic resolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coupling terahertz pulses to a scanning tunnelling microscope (THz-STM).
Figure 2: Autocorrelation of terahertz pulses at an STM tunnel junction.
Figure 3: THz-STM imaging as a function of terahertz pulse autocorrelation overlap time.
Figure 4: Ultrafast photoexcitation of an InAs nanodot (optical-pump/THz-STM-probe).

Similar content being viewed by others

References

  1. Ulbricht, R., Hendry, E., Shan, J., Heinz, T. F. & Bonn, M. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys. 83, 543–586 (2011).

    Article  ADS  Google Scholar 

  2. Jepsen, P. U., Cooke, D. G. & Koch, M. Terahertz spectroscopy and imaging— modern techniques and applications. Laser Photon. Rev. 5, 124–166 (2011).

    Article  ADS  Google Scholar 

  3. Chen, C. J. Introduction to Scanning Tunneling Microscopy (Oxford Univ. Press, 1993).

    Google Scholar 

  4. Grafström, S. Photoassisted scanning tunneling microscopy. J. Appl. Phys. 91, 1717–1753 (2002).

    Article  ADS  Google Scholar 

  5. Hamers, R. J. & Cahill, D. G. Ultrafast time resolution in scanned probe microscopies. Appl. Phys. Lett. 57, 2031–2033 (1990).

    Article  ADS  Google Scholar 

  6. Nunes, G. Jr & Freeman, M. R. Picosecond resolution in scanning tunneling microscopy. Science 262, 1029–1032 (1993).

    Article  ADS  Google Scholar 

  7. Steeves, G. M., Elezzabi, A. Y. & Freeman, M. R. Nanometer-scale imaging with an ultrafast scanning tunneling microscope. Appl. Phys. Lett. 72, 504–506 (1998).

    Article  ADS  Google Scholar 

  8. Khusnatdinov, N. N., Nagle, T. J. & Nunes, G. Jr. Ultrafast scanning tunneling microscopy with 1 nm resolution. Appl. Phys. Lett. 77, 4434–4436 (2000).

    Article  ADS  Google Scholar 

  9. Groeneveld, R. H. M. & van Kempen, H. The capacitive origin of the picosecond electrical transients detected by a photoconductively gated scanning tunneling microscope. Appl. Phys. Lett. 69, 2294–2296 (1996).

    Article  ADS  Google Scholar 

  10. Yarotski, D. A. et al. Ultrafast carrier-relaxation dynamics in self-assembled InAs/GaAs quantum dots. J. Opt. Soc. Am. B 19, 1480–1484 (2002).

    Article  ADS  Google Scholar 

  11. Terada, Y., Yoshida, S., Takeuchi, O. & Shigekawa, H. Real-space imaging of transient carrier dynamics by nanoscale pump–probe microscopy. Nature Photon. 4, 869–874 (2010).

    Article  ADS  Google Scholar 

  12. Yoshida, S., Terada, Y., Oshima, R., Takeuchi, O. & Shigekawa, H. Nanoscale probing of transient carrier dynamics modulated in a GaAs-PIN junction by laser-combined scanning tunneling microscopy. Nanoscale 4, 757–761 (2012).

    Article  ADS  Google Scholar 

  13. Dolocan, A., Acharya, D. P., Zahl, P., Sutter, P. & Camillone, N. III. Two-color ultrafast photoexcited scanning tunneling microscopy. J. Phys. Chem. C 115, 10033–10043 (2011).

    Article  Google Scholar 

  14. Wu, S. W. & Ho, W. Two-photon-induced hot-electron transfer to a single molecule in a scanning tunneling microscope. Phys. Rev. B 82, 085444 (2010).

    Article  ADS  Google Scholar 

  15. Kemiktarak, U., Ndukum, T., Schwab, K. C. & Ekinci, K. L. Radio-frequency scanning tunnelling microscopy. Nature 450, 85–88 (2007).

    Article  ADS  Google Scholar 

  16. Loth, S., Etzkorn, M., Lutz, C. P., Eigler, D. M. & Heinrich, A. J. Measurement of fast electron spin relaxation times with atomic resolution. Science 329, 1628–1630 (2010).

    Article  ADS  Google Scholar 

  17. Moult, I., Herve, M. & Pennec, Y. Ultrafast spectroscopy with a scanning tunneling microscope. Appl. Phys. Lett. 98, 233103 (2011).

    Article  ADS  Google Scholar 

  18. Tonouchi, M. Cutting-edge terahertz technology. Nature Photon. 1, 97–105 (2007).

    Article  ADS  Google Scholar 

  19. Mittleman, D. M. Sensing with Terahertz Radiation (Springer, 2010).

    Google Scholar 

  20. Chen, H-T., Kersting, R. & Cho, G. C. Terahertz imaging with nanometer resolution. Appl. Phys. Lett. 83, 3009–3011 (2003).

    Article  ADS  Google Scholar 

  21. Wang, K., Mittleman, D. M., van der Valk, N. C. J. & Planken, P. C. M. Antenna effects in terahertz apertureless near-field optical microscopy. Appl. Phys. Lett. 85, 2715–2717 (2004).

    Article  ADS  Google Scholar 

  22. Huber, A. J., Keilmann, F., Wittborn, J., Aizpurua, J. & Hillenbrand, R. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. Nano Lett. 8, 3766–3770 (2008).

    Article  ADS  Google Scholar 

  23. Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    Article  ADS  Google Scholar 

  24. Walther, M., Chambers, G. S., Liu, Z., Freeman, M. R. & Hegmann, F. A. Emission and detection of terahertz pulses from a metal-tip antenna. J. Opt. Soc. Am. B 22, 2357–2365 (2005).

    Article  ADS  Google Scholar 

  25. Wang, K. & Mittleman, D. M. Metal wires for terahertz wave guiding. Nature 432, 376–379 (2004).

    Article  ADS  Google Scholar 

  26. Simmons, J. G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 1793–1803 (1963).

    Article  ADS  Google Scholar 

  27. Cooke, D. G. et al. Anisotropic photoconductivity of InGaAs quantum dot chains measured by terahertz pulse spectroscopy. Appl. Phys. Lett. 85, 3839–3841 (2004).

    Article  ADS  Google Scholar 

  28. Liu, H-Y. et al. Ultrafast carrier dynamics in undoped and p-doped InAs/GaAs quantum dots characterized by pump–probe reflection measurements. J. Appl. Phys. 103, 083121 (2008).

    Article  ADS  Google Scholar 

  29. Porte, H. P., Uhd Jepsen, P., Daghestani, N., Rafailov, E. U. & Turchinovich, D. Ultrafast release and capture of carriers in InGaAs/GaAs quantum dots observed by time-resolved terahertz spectroscopy. Appl. Phys. Lett. 94, 262104 (2009).

    Article  ADS  Google Scholar 

  30. Grundmann, M., Stier, O. & Bimberg, D. InAs/GaAs pyramidal quantum dots: strain distribution, optical phonons, and electronic structure. Phys. Rev. B 52, 11969–11981 (1995).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank S. Xu (Alberta Centre for Surface Engineering and Science, University of Alberta) for scanning electron microscope imaging, Auger electron spectroscopy measurements and analysis of the InAs nanodot sample. The authors also acknowledge technical support from G. Popowich, D. Fortin and D. Mullin. This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Foundation for Innovation (CFI), the Alberta Science and Research Investments Program (ASRIP), the Informatics Circle of Research Excellence (iCORE) and the NSERC Nano Innovation Platform (NanoIP).

Author information

Authors and Affiliations

Authors

Contributions

T.L.C. designed and built the THz-STM set-up, and T.L.C. and F.A.H. wrote the manuscript with contributions from all authors. T.L.C. and V.J. developed the THz-STM and carried out experiments with support from J.A.J.B., G.D.L.R., L.V.T. and F.A.H. S.J.M. contributed to the initial design phase of the THz-STM. M.G. and Y.Y.T. provided the InAs nanodot sample and assisted in sample characterization. T.L.C. analysed the data, and V.J., T.L.C. and M.R.F. developed the Simmons model simulation and fits to the data. F.A.H. initiated and developed the THz-STM concept with contributions from M.R.F., helped design the THz-STM set-up, and supervised the project. All authors contributed to discussions.

Corresponding authors

Correspondence to Tyler L. Cocker or Frank A. Hegmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1980 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cocker, T., Jelic, V., Gupta, M. et al. An ultrafast terahertz scanning tunnelling microscope. Nature Photon 7, 620–625 (2013). https://doi.org/10.1038/nphoton.2013.151

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.151

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing