Abstract
Ultrafast studies1,2 of excitations on the nanometre scale are essential for guiding applications in nanotechnology. Efforts to integrate femtosecond lasers with scanning tunnelling microscopes (STMs)3 have yielded a number of ultrafast STM techniques4,5,6,7,8,9,10,11,12,13,14, but the basic ability to directly modulate the STM junction bias while maintaining nanometre spatial resolution has been limited to ∼10 ps (refs 7,8) and has required specialized probe or sample structures. Here, without any modification to the STM design, we modulate the STM junction bias by coupling terahertz pulses to the scanning probe tip of an STM and demonstrate terahertz-pulse-induced tunnelling in an STM. The terahertz STM (THz-STM) provides simultaneous subpicosecond (<500 fs) time resolution and nanometre (2 nm) imaging resolution under ambient laboratory conditions, and can directly image ultrafast carrier capture into a single InAs nanodot. The THz-STM accesses an ultrafast tunnelling regime that opens the door to subpicosecond scanning probe microscopy of materials with atomic resolution.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Ulbricht, R., Hendry, E., Shan, J., Heinz, T. F. & Bonn, M. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys. 83, 543–586 (2011).
Jepsen, P. U., Cooke, D. G. & Koch, M. Terahertz spectroscopy and imaging— modern techniques and applications. Laser Photon. Rev. 5, 124–166 (2011).
Chen, C. J. Introduction to Scanning Tunneling Microscopy (Oxford Univ. Press, 1993).
Grafström, S. Photoassisted scanning tunneling microscopy. J. Appl. Phys. 91, 1717–1753 (2002).
Hamers, R. J. & Cahill, D. G. Ultrafast time resolution in scanned probe microscopies. Appl. Phys. Lett. 57, 2031–2033 (1990).
Nunes, G. Jr & Freeman, M. R. Picosecond resolution in scanning tunneling microscopy. Science 262, 1029–1032 (1993).
Steeves, G. M., Elezzabi, A. Y. & Freeman, M. R. Nanometer-scale imaging with an ultrafast scanning tunneling microscope. Appl. Phys. Lett. 72, 504–506 (1998).
Khusnatdinov, N. N., Nagle, T. J. & Nunes, G. Jr. Ultrafast scanning tunneling microscopy with 1 nm resolution. Appl. Phys. Lett. 77, 4434–4436 (2000).
Groeneveld, R. H. M. & van Kempen, H. The capacitive origin of the picosecond electrical transients detected by a photoconductively gated scanning tunneling microscope. Appl. Phys. Lett. 69, 2294–2296 (1996).
Yarotski, D. A. et al. Ultrafast carrier-relaxation dynamics in self-assembled InAs/GaAs quantum dots. J. Opt. Soc. Am. B 19, 1480–1484 (2002).
Terada, Y., Yoshida, S., Takeuchi, O. & Shigekawa, H. Real-space imaging of transient carrier dynamics by nanoscale pump–probe microscopy. Nature Photon. 4, 869–874 (2010).
Yoshida, S., Terada, Y., Oshima, R., Takeuchi, O. & Shigekawa, H. Nanoscale probing of transient carrier dynamics modulated in a GaAs-PIN junction by laser-combined scanning tunneling microscopy. Nanoscale 4, 757–761 (2012).
Dolocan, A., Acharya, D. P., Zahl, P., Sutter, P. & Camillone, N. III. Two-color ultrafast photoexcited scanning tunneling microscopy. J. Phys. Chem. C 115, 10033–10043 (2011).
Wu, S. W. & Ho, W. Two-photon-induced hot-electron transfer to a single molecule in a scanning tunneling microscope. Phys. Rev. B 82, 085444 (2010).
Kemiktarak, U., Ndukum, T., Schwab, K. C. & Ekinci, K. L. Radio-frequency scanning tunnelling microscopy. Nature 450, 85–88 (2007).
Loth, S., Etzkorn, M., Lutz, C. P., Eigler, D. M. & Heinrich, A. J. Measurement of fast electron spin relaxation times with atomic resolution. Science 329, 1628–1630 (2010).
Moult, I., Herve, M. & Pennec, Y. Ultrafast spectroscopy with a scanning tunneling microscope. Appl. Phys. Lett. 98, 233103 (2011).
Tonouchi, M. Cutting-edge terahertz technology. Nature Photon. 1, 97–105 (2007).
Mittleman, D. M. Sensing with Terahertz Radiation (Springer, 2010).
Chen, H-T., Kersting, R. & Cho, G. C. Terahertz imaging with nanometer resolution. Appl. Phys. Lett. 83, 3009–3011 (2003).
Wang, K., Mittleman, D. M., van der Valk, N. C. J. & Planken, P. C. M. Antenna effects in terahertz apertureless near-field optical microscopy. Appl. Phys. Lett. 85, 2715–2717 (2004).
Huber, A. J., Keilmann, F., Wittborn, J., Aizpurua, J. & Hillenbrand, R. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. Nano Lett. 8, 3766–3770 (2008).
Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).
Walther, M., Chambers, G. S., Liu, Z., Freeman, M. R. & Hegmann, F. A. Emission and detection of terahertz pulses from a metal-tip antenna. J. Opt. Soc. Am. B 22, 2357–2365 (2005).
Wang, K. & Mittleman, D. M. Metal wires for terahertz wave guiding. Nature 432, 376–379 (2004).
Simmons, J. G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 1793–1803 (1963).
Cooke, D. G. et al. Anisotropic photoconductivity of InGaAs quantum dot chains measured by terahertz pulse spectroscopy. Appl. Phys. Lett. 85, 3839–3841 (2004).
Liu, H-Y. et al. Ultrafast carrier dynamics in undoped and p-doped InAs/GaAs quantum dots characterized by pump–probe reflection measurements. J. Appl. Phys. 103, 083121 (2008).
Porte, H. P., Uhd Jepsen, P., Daghestani, N., Rafailov, E. U. & Turchinovich, D. Ultrafast release and capture of carriers in InGaAs/GaAs quantum dots observed by time-resolved terahertz spectroscopy. Appl. Phys. Lett. 94, 262104 (2009).
Grundmann, M., Stier, O. & Bimberg, D. InAs/GaAs pyramidal quantum dots: strain distribution, optical phonons, and electronic structure. Phys. Rev. B 52, 11969–11981 (1995).
Acknowledgements
The authors thank S. Xu (Alberta Centre for Surface Engineering and Science, University of Alberta) for scanning electron microscope imaging, Auger electron spectroscopy measurements and analysis of the InAs nanodot sample. The authors also acknowledge technical support from G. Popowich, D. Fortin and D. Mullin. This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Foundation for Innovation (CFI), the Alberta Science and Research Investments Program (ASRIP), the Informatics Circle of Research Excellence (iCORE) and the NSERC Nano Innovation Platform (NanoIP).
Author information
Authors and Affiliations
Contributions
T.L.C. designed and built the THz-STM set-up, and T.L.C. and F.A.H. wrote the manuscript with contributions from all authors. T.L.C. and V.J. developed the THz-STM and carried out experiments with support from J.A.J.B., G.D.L.R., L.V.T. and F.A.H. S.J.M. contributed to the initial design phase of the THz-STM. M.G. and Y.Y.T. provided the InAs nanodot sample and assisted in sample characterization. T.L.C. analysed the data, and V.J., T.L.C. and M.R.F. developed the Simmons model simulation and fits to the data. F.A.H. initiated and developed the THz-STM concept with contributions from M.R.F., helped design the THz-STM set-up, and supervised the project. All authors contributed to discussions.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 1980 kb)
Rights and permissions
About this article
Cite this article
Cocker, T., Jelic, V., Gupta, M. et al. An ultrafast terahertz scanning tunnelling microscope. Nature Photon 7, 620–625 (2013). https://doi.org/10.1038/nphoton.2013.151
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2013.151
This article is cited by
-
Ultrafast atomic-scale scanning tunnelling spectroscopy of a single vacancy in a monolayer crystal
Nature Photonics (2024)
-
Lightwave electronics in condensed matter
Nature Reviews Materials (2023)
-
Externally-triggerable optical pump-probe scanning tunneling microscopy with a time resolution of tens-picosecond
Scientific Reports (2023)
-
Terahertz waveform synthesis in integrated thin-film lithium niobate platform
Nature Communications (2023)
-
Single-shot ultrafast terahertz photography
Nature Communications (2023)