An ultrafast terahertz scanning tunnelling microscope

Article metrics

Abstract

Ultrafast studies1,2 of excitations on the nanometre scale are essential for guiding applications in nanotechnology. Efforts to integrate femtosecond lasers with scanning tunnelling microscopes (STMs)3 have yielded a number of ultrafast STM techniques4,5,6,7,8,9,10,11,12,13,14, but the basic ability to directly modulate the STM junction bias while maintaining nanometre spatial resolution has been limited to 10 ps (refs 7,8) and has required specialized probe or sample structures. Here, without any modification to the STM design, we modulate the STM junction bias by coupling terahertz pulses to the scanning probe tip of an STM and demonstrate terahertz-pulse-induced tunnelling in an STM. The terahertz STM (THz-STM) provides simultaneous subpicosecond (<500 fs) time resolution and nanometre (2 nm) imaging resolution under ambient laboratory conditions, and can directly image ultrafast carrier capture into a single InAs nanodot. The THz-STM accesses an ultrafast tunnelling regime that opens the door to subpicosecond scanning probe microscopy of materials with atomic resolution.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Coupling terahertz pulses to a scanning tunnelling microscope (THz-STM).
Figure 2: Autocorrelation of terahertz pulses at an STM tunnel junction.
Figure 3: THz-STM imaging as a function of terahertz pulse autocorrelation overlap time.
Figure 4: Ultrafast photoexcitation of an InAs nanodot (optical-pump/THz-STM-probe).

References

  1. 1

    Ulbricht, R., Hendry, E., Shan, J., Heinz, T. F. & Bonn, M. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys. 83, 543–586 (2011).

  2. 2

    Jepsen, P. U., Cooke, D. G. & Koch, M. Terahertz spectroscopy and imaging— modern techniques and applications. Laser Photon. Rev. 5, 124–166 (2011).

  3. 3

    Chen, C. J. Introduction to Scanning Tunneling Microscopy (Oxford Univ. Press, 1993).

  4. 4

    Grafström, S. Photoassisted scanning tunneling microscopy. J. Appl. Phys. 91, 1717–1753 (2002).

  5. 5

    Hamers, R. J. & Cahill, D. G. Ultrafast time resolution in scanned probe microscopies. Appl. Phys. Lett. 57, 2031–2033 (1990).

  6. 6

    Nunes, G. Jr & Freeman, M. R. Picosecond resolution in scanning tunneling microscopy. Science 262, 1029–1032 (1993).

  7. 7

    Steeves, G. M., Elezzabi, A. Y. & Freeman, M. R. Nanometer-scale imaging with an ultrafast scanning tunneling microscope. Appl. Phys. Lett. 72, 504–506 (1998).

  8. 8

    Khusnatdinov, N. N., Nagle, T. J. & Nunes, G. Jr. Ultrafast scanning tunneling microscopy with 1 nm resolution. Appl. Phys. Lett. 77, 4434–4436 (2000).

  9. 9

    Groeneveld, R. H. M. & van Kempen, H. The capacitive origin of the picosecond electrical transients detected by a photoconductively gated scanning tunneling microscope. Appl. Phys. Lett. 69, 2294–2296 (1996).

  10. 10

    Yarotski, D. A. et al. Ultrafast carrier-relaxation dynamics in self-assembled InAs/GaAs quantum dots. J. Opt. Soc. Am. B 19, 1480–1484 (2002).

  11. 11

    Terada, Y., Yoshida, S., Takeuchi, O. & Shigekawa, H. Real-space imaging of transient carrier dynamics by nanoscale pump–probe microscopy. Nature Photon. 4, 869–874 (2010).

  12. 12

    Yoshida, S., Terada, Y., Oshima, R., Takeuchi, O. & Shigekawa, H. Nanoscale probing of transient carrier dynamics modulated in a GaAs-PIN junction by laser-combined scanning tunneling microscopy. Nanoscale 4, 757–761 (2012).

  13. 13

    Dolocan, A., Acharya, D. P., Zahl, P., Sutter, P. & Camillone, N. III. Two-color ultrafast photoexcited scanning tunneling microscopy. J. Phys. Chem. C 115, 10033–10043 (2011).

  14. 14

    Wu, S. W. & Ho, W. Two-photon-induced hot-electron transfer to a single molecule in a scanning tunneling microscope. Phys. Rev. B 82, 085444 (2010).

  15. 15

    Kemiktarak, U., Ndukum, T., Schwab, K. C. & Ekinci, K. L. Radio-frequency scanning tunnelling microscopy. Nature 450, 85–88 (2007).

  16. 16

    Loth, S., Etzkorn, M., Lutz, C. P., Eigler, D. M. & Heinrich, A. J. Measurement of fast electron spin relaxation times with atomic resolution. Science 329, 1628–1630 (2010).

  17. 17

    Moult, I., Herve, M. & Pennec, Y. Ultrafast spectroscopy with a scanning tunneling microscope. Appl. Phys. Lett. 98, 233103 (2011).

  18. 18

    Tonouchi, M. Cutting-edge terahertz technology. Nature Photon. 1, 97–105 (2007).

  19. 19

    Mittleman, D. M. Sensing with Terahertz Radiation (Springer, 2010).

  20. 20

    Chen, H-T., Kersting, R. & Cho, G. C. Terahertz imaging with nanometer resolution. Appl. Phys. Lett. 83, 3009–3011 (2003).

  21. 21

    Wang, K., Mittleman, D. M., van der Valk, N. C. J. & Planken, P. C. M. Antenna effects in terahertz apertureless near-field optical microscopy. Appl. Phys. Lett. 85, 2715–2717 (2004).

  22. 22

    Huber, A. J., Keilmann, F., Wittborn, J., Aizpurua, J. & Hillenbrand, R. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. Nano Lett. 8, 3766–3770 (2008).

  23. 23

    Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

  24. 24

    Walther, M., Chambers, G. S., Liu, Z., Freeman, M. R. & Hegmann, F. A. Emission and detection of terahertz pulses from a metal-tip antenna. J. Opt. Soc. Am. B 22, 2357–2365 (2005).

  25. 25

    Wang, K. & Mittleman, D. M. Metal wires for terahertz wave guiding. Nature 432, 376–379 (2004).

  26. 26

    Simmons, J. G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 1793–1803 (1963).

  27. 27

    Cooke, D. G. et al. Anisotropic photoconductivity of InGaAs quantum dot chains measured by terahertz pulse spectroscopy. Appl. Phys. Lett. 85, 3839–3841 (2004).

  28. 28

    Liu, H-Y. et al. Ultrafast carrier dynamics in undoped and p-doped InAs/GaAs quantum dots characterized by pump–probe reflection measurements. J. Appl. Phys. 103, 083121 (2008).

  29. 29

    Porte, H. P., Uhd Jepsen, P., Daghestani, N., Rafailov, E. U. & Turchinovich, D. Ultrafast release and capture of carriers in InGaAs/GaAs quantum dots observed by time-resolved terahertz spectroscopy. Appl. Phys. Lett. 94, 262104 (2009).

  30. 30

    Grundmann, M., Stier, O. & Bimberg, D. InAs/GaAs pyramidal quantum dots: strain distribution, optical phonons, and electronic structure. Phys. Rev. B 52, 11969–11981 (1995).

Download references

Acknowledgements

The authors thank S. Xu (Alberta Centre for Surface Engineering and Science, University of Alberta) for scanning electron microscope imaging, Auger electron spectroscopy measurements and analysis of the InAs nanodot sample. The authors also acknowledge technical support from G. Popowich, D. Fortin and D. Mullin. This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Foundation for Innovation (CFI), the Alberta Science and Research Investments Program (ASRIP), the Informatics Circle of Research Excellence (iCORE) and the NSERC Nano Innovation Platform (NanoIP).

Author information

T.L.C. designed and built the THz-STM set-up, and T.L.C. and F.A.H. wrote the manuscript with contributions from all authors. T.L.C. and V.J. developed the THz-STM and carried out experiments with support from J.A.J.B., G.D.L.R., L.V.T. and F.A.H. S.J.M. contributed to the initial design phase of the THz-STM. M.G. and Y.Y.T. provided the InAs nanodot sample and assisted in sample characterization. T.L.C. analysed the data, and V.J., T.L.C. and M.R.F. developed the Simmons model simulation and fits to the data. F.A.H. initiated and developed the THz-STM concept with contributions from M.R.F., helped design the THz-STM set-up, and supervised the project. All authors contributed to discussions.

Correspondence to Tyler L. Cocker or Frank A. Hegmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1980 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cocker, T., Jelic, V., Gupta, M. et al. An ultrafast terahertz scanning tunnelling microscope. Nature Photon 7, 620–625 (2013) doi:10.1038/nphoton.2013.151

Download citation

Further reading