Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Detecting single infrared photons with 93% system efficiency

Abstract

Single-photon detectors1 at near-infrared wavelengths with high system detection efficiency (>90%), low dark count rate (<1 c.p.s.), low timing jitter (<100 ps) and short reset time (<100 ns) would enable landmark experiments in a variety of fields2,3,4,5,6. Although some of the existing approaches to single-photon detection fulfil one or two of the above specifications1, to date, no detector has met all of the specifications simultaneously. Here, we report on a fibre-coupled single-photon detection system that uses superconducting nanowire single-photon detectors7 and closely approaches the ideal performance of single-photon detectors. Our detector system has a system detection efficiency (including optical coupling losses) greater than 90% in the wavelength range λ = 1,520–1,610 nm, with a device dark count rate (measured with the device shielded from any background radiation) of 1 c.p.s., timing jitter of 150 ps full-width at half-maximum (FWHM) and reset time of 40 ns.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Bias current dependence of SDE, SDCR and DDCR.
Figure 2: Polarization and wavelength dependence of SDE.
Figure 3: Temperature dependence of SDE, SDCR and DDCR.
Figure 4: Reset time and jitter.

References

  1. Eisaman, M. D., Fan, J., Migdall, A. & Polyakov, S. V. Invited Review Article: Single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101 (2011).

    ADS  Article  Google Scholar 

  2. Garg, A. & Mermin, N. D. Detector inefficiencies in the Einstein–Podolsky–Rosen experiment. Phys. Rev. D 35, 3831–3835 (1987).

    ADS  Article  Google Scholar 

  3. Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

    ADS  Article  Google Scholar 

  4. Gisin, N. & Thew, R. Quantum communication. Nature Photon. 1, 165–171 (2007).

    ADS  Article  Google Scholar 

  5. Li, D. D. U. et al. Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm. J. Biomed. Opt. 16, 096012 (2011).

    ADS  Article  Google Scholar 

  6. Weibring, P., Edner, H. & Svanberg, S. Versatile mobile lidar system for environmental monitoring. Appl. Opt. 42, 3583–3594 (2003).

    ADS  Article  Google Scholar 

  7. Gol'tsman, G. N. et al. Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79, 705–707 (2001).

    ADS  Article  Google Scholar 

  8. Natarajan, C. M., Tanner, M. G. & Hadfield, R. H. Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Technol. 25, 063001 (2012).

    ADS  Article  Google Scholar 

  9. Correa, R. E. et al. Single photon counting from individual nanocrystals in the infrared. Nano Lett. 12, 2953–2958 (2012).

    ADS  Article  Google Scholar 

  10. Toth, L. E. Transition Metal Carbides and Nitrides Ch. 7 (Academic Press, 1971).

    Google Scholar 

  11. Marsili, F. et al. High quality superconducting NbN thin films on GaAs. Supercond. Sci. Technol. 22, 095013 (2009).

    ADS  Article  Google Scholar 

  12. Kerman, A. J. et al. Constriction-limited detection efficiency of superconducting nanowire single-photon detectors. Appl. Phys. Lett. 90, 101110 (2007).

    ADS  Article  Google Scholar 

  13. Marsili, F. et al. Single-photon detectors based on ultra-narrow superconducting nanowires. Nano Lett. 11, 2048–2053 (2011).

    ADS  Article  Google Scholar 

  14. Baek, B., Lita, A. E., Verma, V. & Nam, S. W. Superconducting a-WxSi1−x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm. Appl. Phys. Lett. 98, 251105 (2011).

    ADS  Article  Google Scholar 

  15. Semenov, A. D., Gol'tsman, G. N. & Korneev, A. A. Quantum detection by current carrying superconducting film. Physica C 351, 349–356 (2001).

    ADS  Article  Google Scholar 

  16. Bulaevskii, L. N., Graf, M. J. & Kogan, V. G. Vortex-assisted photon counts and their magnetic field dependence in single-photon superconducting detectors. Phys. Rev. B 85, 014505 (2012).

    ADS  Article  Google Scholar 

  17. Miller, A. J. et al. Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent. Opt. Express 19, 9102–9110 (2011).

    ADS  Article  Google Scholar 

  18. Lita, A. E., Miller, A. J. & Nam, S. W. Counting near-infrared single-photons with 95% efficiency. Opt. Express 16, 3032–3040 (2008).

    ADS  Article  Google Scholar 

  19. Lamas-Linares, A. et al. in Proceedings of the Quantum Electronics and Laser Science Conference QTu3E.1 (Optical Society of America, 2012).

    Google Scholar 

  20. Anant, V. et al. Optical properties of superconducting nanowire single-photon detectors. Opt. Express 16, 10750–10761 (2008).

    ADS  Article  Google Scholar 

  21. Yamashita, T. et al. Origin of intrinsic dark count in superconducting nanowire single-photon detectors. Appl. Phys. Lett. 99, 161105 (2011).

    ADS  Article  Google Scholar 

  22. Dorenbos, S. N. et al. Superconducting single photon detectors with minimized polarization dependence. Appl. Phys. Lett. 93, 161102 (2008).

    ADS  Article  Google Scholar 

  23. Semenov, A. et al. Optical and transport properties of ultrathin NbN films and nanostructures. Phys. Rev. B 80, 054510 (2009).

    ADS  Article  Google Scholar 

  24. Driessen, E. F. C. et al. Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors. Eur. Phys. J. Appl. Phys. 47, 10701 (2009).

    Article  Google Scholar 

  25. Ekin, J. W. Experimental Techniques for Low-Temperature Measurements: Cryostat Design, Material Properties, and Superconductor Critical-Current Testing (Oxford Univ. Press, 2007).

    Google Scholar 

  26. Stern, J. A. & Farr, W. H. Fabrication and characterization of superconducting NbN nanowire single photon detectors. IEEE Trans. Appl. Supercond. 17, 306–309 (2007).

    ADS  Article  Google Scholar 

  27. Kerman, A. J. et al. Kinetic-inductance-limited reset time of superconducting nanowire photon counters. Appl. Phys. Lett. 88, 111116 (2006).

    ADS  Article  Google Scholar 

  28. Ejrnaes, M. et al. A cascade switching superconducting single photon detector. Appl. Phys. Lett. 91, 262509 (2007).

    ADS  Article  Google Scholar 

  29. Marsili, F., Najafi, F., Dauler, E., Molnar, R. J. & Berggren, K. K. Afterpulsing and instability in superconducting nanowire avalanche photodetectors. Appl. Phys. Lett. 100, 112601 (2012).

    ADS  Article  Google Scholar 

  30. Marsili, F. et al. Efficient single photon detection from 500 nanometer to 5 micron wavelength. Nano Lett. 12, 4799–4804 (2012).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank R. M. Briggs, S. D. Dyer, W. H. Farr, J. Gao, M. Green, E. Grossman, P. D. Hale, R. W. Leonhardt, I. Levin and R. E. Muller for technical support, and S. Bradley, B. Calkins, A. Migdall and M. Stevens for scientific discussions. Part of this work was supported by the Defense Advanced Research Projects Agency (Information in a Photon programme). Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Contributions

F.M., V.B.V., J.A.S., A.E.L., B.B., R.P.M. and S.W.N. conceived and designed the experiments. F.M., V.B.V., J.A.S., S.H. and T.G. performed the experiments. F.M. and S.H. analysed the data. J.A.S., I.V., M.D.S. and S.W.N. contributed materials/analysis tools. F.M. wrote the paper.

Corresponding authors

Correspondence to F. Marsili or S. W. Nam.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5833 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Marsili, F., Verma, V., Stern, J. et al. Detecting single infrared photons with 93% system efficiency. Nature Photon 7, 210–214 (2013). https://doi.org/10.1038/nphoton.2013.13

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.13

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing